Math 240: Matrix Basics

Ryan Blair

University of Pennsylvania
Friday September 28, 2012

Outline

(1) Operations on Matrices

Operations on Matrices

Goals

(1) Matrix basics
(2) Add and subtract matrices
(3) Multiply a matrix by a scalar
(9) Multiply matrices
(5) Take the transpose of a matrix
(6) Special types of matrices
(1) Matrix properties

A Quick Review

Definition

A matrix is a rectangular array of numbers or functions with m rows and n columns.

A Quick Review

Definition

A matrix is a rectangular array of numbers or functions with m rows and n columns.

$$
X=\left(\begin{array}{cccc}
x_{1,1} & x_{1,2} & \ldots & x_{1, n} \\
x_{2,1} & x_{2,2} & \ldots & x_{2, n} \\
\vdots & \vdots & \vdots & \vdots \\
x_{m, 1} & x_{m, 2} & \ldots & x_{m, n}
\end{array}\right)=\left(x_{i, j}\right)_{m \times n}
$$

A Quick Review

Definition

A matrix is a rectangular array of numbers or functions with m rows and n columns.

$$
X=\left(\begin{array}{cccc}
x_{1,1} & x_{1,2} & \ldots & x_{1, n} \\
x_{2,1} & x_{2,2} & \ldots & x_{2, n} \\
\vdots & \vdots & \vdots & \vdots \\
x_{m, 1} & x_{m, 2} & \ldots & x_{m, n}
\end{array}\right)=\left(x_{i, j}\right)_{m \times n}
$$

The dimension of a matrix is (the number of Rows) \times (the number of columns).

A Quick Review

Definition

A matrix is a rectangular array of numbers or functions with m rows and n columns.

$$
X=\left(\begin{array}{cccc}
x_{1,1} & x_{1,2} & \ldots & x_{1, n} \\
x_{2,1} & x_{2,2} & \ldots & x_{2, n} \\
\vdots & \vdots & \vdots & \vdots \\
x_{m, 1} & x_{m, 2} & \ldots & x_{m, n}
\end{array}\right)=\left(x_{i, j}\right)_{m \times n}
$$

The dimension of a matrix is (the number of Rows) \times (the number of columns). Two Matrices are equal if they have the same dimension and corresponding entries are equal.

Matrix Operations

Matrix Operations

(1) Matrix Addition: $\left(a_{i j}\right)_{m \times n}+\left(b_{i j}\right)_{m \times n}=\left(a_{i j}+b_{i j}\right)_{m \times n}$

Matrix Operations

(1) Matrix Addition: $\left(a_{i j}\right)_{m \times n}+\left(b_{i j}\right)_{m \times n}=\left(a_{i j}+b_{i j}\right)_{m \times n}$
(2) Scalar Multiplication: $k\left(a_{i j}\right)_{m \times n}=\left(k a_{i j}\right)_{m \times n}$

Matrix Operations
(1) Matrix Addition: $\left(a_{i j}\right)_{m \times n}+\left(b_{i j}\right)_{m \times n}=\left(a_{i j}+b_{i j}\right)_{m \times n}$
(2) Scalar Multiplication: $k\left(a_{i j}\right)_{m \times n}=\left(k a_{i j}\right)_{m \times n}$
(3) Matrix multiplication: The ij entry is the dot product of the i-th row of the matrix on the left with the j-th column of the matrix on the right.

Matrix Operations
(1) Matrix Addition: $\left(a_{i j}\right)_{m \times n}+\left(b_{i j}\right)_{m \times n}=\left(a_{i j}+b_{i j}\right)_{m \times n}$
(2) Scalar Multiplication: $k\left(a_{i j}\right)_{m \times n}=\left(k a_{i j}\right)_{m \times n}$
(3) Matrix multiplication: The ij entry is the dot product of the i-th row of the matrix on the left with the j-th column of the matrix on the right.
(4) Matrix Transpose: $\left(a_{i j}\right)_{m \times n}^{T}=\left(a_{j i}\right)_{n \times m}$ (Rows of A become columns of A^{T} and columns of A become rows of A^{T}.)

Special Matrices

Definition

A matrix is symmetric if $A^{T}=A$

Special Matrices

Definition

A matrix is symmetric if $A^{T}=A$

Definition

A matrix is square if it is of size $n \times n$.

Special Matrices

Definition
 A matrix is symmetric if $A^{T}=A$

Definition

A matrix is square if it is of size $n \times n$.

Definition

A matrix A is diagonal if it is square and the only non-zero entries are of the form $a_{i j}$ for some i.

Special Matrices

Definition
 A matrix is symmetric if $A^{T}=A$

Definition

A matrix is square if it is of size $n \times n$.

Definition

A matrix A is diagonal if it is square and the only non-zero entries are of the form $a_{i i}$ for some i.

Definition

The identity matrix of dimension n, denoted I_{n}, is the $n \times n$ diagonal matrix where all the diagonal entries are 1 .

Special Matrices

Definition

A matrix is skew symmetric if $A^{T}=-A$

Special Matrices

Definition

A matrix is skew symmetric if $A^{T}=-A$

Definition

A matrix is upper triangular if all entries below the diagonal are zero.

Special Matrices

Definition
 A matrix is skew symmetric if $A^{T}=-A$

Definition

A matrix is upper triangular if all entries below the diagonal are zero.

Definition

A matrix A is lower triangular if all entries above the diagonal are zero.

Special Matrices

Definition

A matrix is skew symmetric if $A^{T}=-A$

Definition

A matrix is upper triangular if all entries below the diagonal are zero.

Definition

A matrix A is lower triangular if all entries above the diagonal are zero.

Definition

The trace of a square matrix is the sum of the diagonal entries.

Matrix Properties

Let A and B be $m \times n$ matrices. Let k and p be scalars.
(1) $A+B=B+A$
(2) $A+(B+C)=(A+B)+C$
(3) $k(A+B)=k A+k B$
(9) $(k+p) A=k A+p A$

Let 0 be the $m \times n$ matrix of all zeros
(1) $A+0=A$
(2) $A-A=0$
(3) $k A=0$ implies $k=0$ or $A=0$.

More Matrix Properties

(1) $A(B C)=(A B) C$
(2) $A(B+C)=A B+A C$
(3) $(A+B) C=A C+B C$
(9) $k(A B)=(k A) B=A(k B)$
(5) $I_{m} A=A$
(6) $A I_{n}=A$

Even More Matrix Properties

(1) $\left(A^{T}\right)^{T}=A$
(2) $(k A)^{T}=k A^{T}$
(3) $(A+B)^{T}=A^{T}+B^{T}$
(9) $(A B)^{T}=B^{T} A^{T}$

