Math 240: Stokes's Theorem and Gauss's Theorem Again

Ryan Blair

University of Pennsylvania

Monday Sept. 26, 2012

Ryan Blair (U Penn)

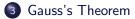
Math 240: Stokes's Theorem and Gauss's The

Monday Sept. 26, 2012

∃ ≥ ≥

3

< 口 > < 同



Ryan Blair (U Penn)

Math 240: Stokes's Theorem and Gauss's Th

Monday Sept. 26, 2012

→ Ξ →

3

< □ > < 同 >

Today's Goals

Be able to apply Stokes's Theorem

Be able to apply Gauss's Theorem

3.5 3

< 日 > < 同 >

Stokes' Theorem

Theorem

Let S be a **nice** oriented surface in \mathbb{R}^3 . Suppose that ∂S is oriented consistently with S. Let **F** be a vector field of class C^1 defined on S. Then

$$\int \int_{\mathcal{S}} (
abla imes \mathbf{F}) \cdot d\mathbf{S} = \oint_{\partial S} \mathbf{F} \cdot d\mathbf{s}$$

Example: Let $F = \langle y^2, 2z + x, 2y^2 \rangle$. Find a plane ax + by + cz = 0 such that $\oint_C F \circ dr = 0$ for every smooth simple closed curve *C* in the plane.

(ロト (雪下 (ヨト (ヨ)))

Gauss's Theorem

Theorem

Let D be a bounded solid region in \mathbb{R}^3 whose boundary ∂D consists of finitely many piecewise smooth, closed orientable surfaces, each of which is oriented by unit normals that point away from D. Let **F** be a vector field of class \mathbb{C}^1 whose domain includes D. Then

$$\int \int_{\partial D} \mathbf{F} \cdot d\mathbf{S} = \int \int \int_{D} \nabla \cdot \mathbf{F} dV.$$

Example Find the flux of $\mathbf{F} = xy\mathbf{i} + yz\mathbf{j} + xz\mathbf{k}$ outward through the surface of the cube cut from the first octant by the planes x = 1, y = 1 and z = 1.

ヨト・ヨト

Gauss's Theorem

Theorem

Let D be a bounded solid region in \mathbb{R}^3 whose boundary ∂D consists of finitely many piecewise smooth, closed orientable surfaces, each of which is oriented by unit normals that point away from D. Let **F** be a vector field of class \mathbb{C}^1 whose domain includes D. Then

$$\int \int_{\partial D} \mathbf{F} \cdot d\mathbf{S} = \int \int \int_{D} \nabla \cdot \mathbf{F} dV.$$

Example: Use the Gauss's theorem to evaluate $\int \int_{S} \mathbf{F} \cdot d\mathbf{S}$ where $\mathbf{F} = \langle x + y, z, z - x \rangle$ and *S* is the boundary of the region between $z = 9 - x^2 - y^2$ and the *xy*-plane.

Monday Sept. 26, 2012

ヨト イヨト ニヨ

Gauss's Theorem

Theorem

Let D be a bounded solid region in \mathbb{R}^3 whose boundary ∂D consists of finitely many piecewise smooth, closed orientable surfaces, each of which is oriented by unit normals that point away from D. Let **F** be a vector field of class \mathbb{C}^1 whose domain includes D. Then

$$\int \int_{\partial D} \mathbf{F} \cdot d\mathbf{S} = \int \int \int_{D} \nabla \cdot \mathbf{F} dV.$$

Example Find the outward flux of

$$\frac{\langle x, y, z \rangle}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}$$

across the region D given by $0 < a^2 \le x^2 + y^2 + z^2 \le b^2$.

Theorem

Let S be a bounded, piecewise smooth, oriented surface in \mathbb{R}^3 . Suppose that ∂S consists of finitely many piecewise C^1 , simple, closed curves each of which is oriented consistently with S. Let **F** be a vector field of class C^1 defined on S. Then

$$\int \int_{\mathcal{S}} (
abla imes {f F}) \cdot d{f S} = \oint_{\partial \mathcal{S}} {f F} \cdot d{f s}$$

Theorem

Let D be a bounded solid region in \mathbb{R}^3 whose boundary ∂D consists of finitely many piecewise smooth, closed orientable surfaces, each of which is oriented by unit normals that point away from D. Let **F** be a vector field of class \mathbb{C}^1 whose domain includes D. Then

$$\int \int_{\partial D} \mathbf{F} \cdot d\mathbf{S} = \int \int \int_{D} \nabla \cdot \mathbf{F} dV.$$