# Math 240: Stokes's Theorem and Gauss's Theorem 

Ryan Blair

University of Pennsylvania
Monday Sept. 24, 2012

## Outline

(1) Today's Goals

(2) Stokes's Theorem
(3) Gauss's Theorem

## Today's Goals

(1) Be able to apply Stokes's Theorem
(2) Be able to apply Gauss's Theorem

## Stokes' Theorem

## Theorem

Let $S$ be a nice oriented surface in $R^{3}$. Suppose that $\partial S$ is oriented consistently with $S$. Let $\mathbf{F}$ be a vector field of class $C^{1}$ defined on $S$. Then

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\oint_{\partial S} \mathbf{F} \cdot d \mathbf{s}
$$

Example: Find the flux of the curl of $\mathbf{F}$ across the upward oriented surface given by $z=4-x^{2}-y^{2}$ and $z \geq 0$ where $\mathbf{F}=<z^{2}-y, x+z, z^{3}>$.

## Stokes' Theorem

## Theorem

Let $S$ be a nice oriented surface in $R^{3}$. Suppose that $\partial S$ is oriented consistently with $S$. Let $\mathbf{F}$ be a vector field of class $C^{1}$ defined on $S$. Then

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\oint_{\partial S} \mathbf{F} \cdot d \mathbf{s}
$$

Example: Let $F=<y^{2}, 2 z+x, 2 y^{2}>$. Find a plane $a x+b y+c z=0$ such that $\oint_{C} F \circ d r=0$ for every smooth simple closed curve $C$ in the plane.

## Gauss's Theorem

## Theorem

Let $D$ be a bounded solid region in $R^{3}$ whose boundary $\partial D$ consists of finitely many piecewise smooth, closed orientable surfaces, each of which is oriented by unit normals that point away from D. Let $\mathbf{F}$ be a vector field of class $C^{1}$ whose domain includes $D$. Then

$$
\iint_{\partial D} \mathbf{F} \cdot d \mathbf{S}=\iiint_{D} \nabla \cdot \mathbf{F} d V
$$

## Gauss's Theorem

## Theorem

Let $D$ be a bounded solid region in $R^{3}$ whose boundary $\partial D$ consists of finitely many piecewise smooth, closed orientable surfaces, each of which is oriented by unit normals that point away from $D$. Let $\mathbf{F}$ be a vector field of class $C^{1}$ whose domain includes $D$. Then

$$
\iint_{\partial D} \mathbf{F} \cdot d \mathbf{S}=\iiint_{D} \nabla \cdot \mathbf{F} d V .
$$

Example Find the flux of $\mathbf{F}=x y \mathbf{i}+y z \mathbf{j}+x z \mathbf{k}$ outward through the surface of the cube cut from the first octant by the planes $x=1$, $y=1$ and $z=1$.

## Gauss's Theorem

## Theorem

Let $D$ be a bounded solid region in $R^{3}$ whose boundary $\partial D$ consists of finitely many piecewise smooth, closed orientable surfaces, each of which is oriented by unit normals that point away from $D$. Let $\mathbf{F}$ be a vector field of class $C^{1}$ whose domain includes $D$. Then

$$
\iint_{\partial D} \mathbf{F} \cdot d \mathbf{S}=\iiint_{D} \nabla \cdot \mathbf{F} d V .
$$

Example: Use the divergence theorem to evaluate $\iint_{S}(\mathbf{F} \cdot \mathbf{n}) d S$ where $\mathbf{F}=<x+y, z, z-x>$ and $S$ is the boundary of the region between $z=9-x^{2}-y^{2}$ and the $x y$-plane.

## Stokes's Theorem

## Theorem

Let $S$ be a bounded, piecewise smooth, oriented surface in $R^{3}$. Suppose that $\partial S$ consists of finitely many piecewise $C^{1}$, simple, closed curves each of which is oriented consistently with S. Let $\mathbf{F}$ be a vector field of class $C^{1}$ defined on $S$. Then

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot d \mathbf{S}=\oint_{\partial S} \mathbf{F} \cdot d \mathbf{s}
$$

## Gauss's Theorem

## Theorem

Let $D$ be a bounded solid region in $R^{3}$ whose boundary $\partial D$ consists of finitely many piecewise smooth, closed orientable surfaces, each of which is oriented by unit normals that point away from D. Let $\mathbf{F}$ be a vector field of class $C^{1}$ whose domain includes $D$. Then

$$
\iint_{\partial D} \mathbf{F} \cdot d \mathbf{S}=\iiint_{D} \nabla \cdot \mathbf{F} d V
$$

