Math 240: Surface Integrals

Ryan Blair

University of Pennsylvania

Monday Sept. 17, 2012

Outline

(1) Today's Goals

(2) Review

(3) Surface Integrals

Today's Goals

(1) Review of surface area for a parameterized surfaces.
(2) Be able to evaluate Surface Integrals.

Surface Area of a Parameterized Surface

Given a parametrization $\mathbf{X}: D \rightarrow \mathbb{R}^{3}$ such that $X(s, t)=(x(s, t), y(s, t), z(s, t))$.

The surface area of $S=\mathbf{X}(D)$ is equal to

$$
\iint_{D}\left\|T_{s} \times T_{t}\right\| d s d t
$$

Scalar Surface Integrals

Definition

Let $\mathbf{X}: D \rightarrow \mathbb{R}^{3}$ be a smooth parametrized surface, where D is a region in \mathbb{R}^{2}. Let $f: \mathbf{X}(D) \rightarrow \mathbb{R}$ be a continuous function. Then the scalar surface integral of f along \mathbf{X} is

$$
\iint_{X} f d S=\iint_{D} f(\mathbf{X}(s, t))\left\|T_{s} \times T_{t}\right\| d s d t
$$

Example Find $\iint_{S} x^{2}+y^{2} d S$, where S is the outward oriented lateral surface of the cylinder of radius a and height h whose axis is the z-axis.

Vector Surface Integrals

Definition

Let $\mathbf{X}: D \rightarrow \mathbb{R}^{3}$ be a smooth parametrized surface, where D is a region in \mathbb{R}^{2}. Let $\mathbf{F}(x, y, z)$ be a continuous $f: \mathbf{X}(D) \rightarrow \mathbb{R}$ be a continuous function. Then the vector surface integral (or Flux) of \mathbf{F} along \mathbf{X} is

$$
\iint_{\mathbf{X}} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \mathbf{F}(\mathbf{X}(s, t)) \cdot \mathbf{N}(s, t) d s d t
$$

where $\mathbf{N}(s, t)=T_{s} \times T_{t}$.
ExampleFind the flux of $\mathbf{F}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ across the surface S consisting of the triangular region of the plane $2 x-2 y+z=2$ that is cut out by the coordinate planes. Use an upward-pointing normal to orient S.

Orientation

Definition

An orientable surface has two sides that can be painted red and blue resp.

Definition

If a parameterized surface S is orientable, then an orientation is a choice of one of two normal vectors.

$$
N_{1}=T_{s} \times T_{t}
$$

or

$$
N_{2}=T_{t} \times T_{s}=-N_{1}
$$

