Math 240: Spring-Mass Systems

Ryan Blair

University of Pennsylvania

Friday December 7, 2012

Outline

(1) Today's Goals
(2) Spring/Mass Systems with Damped Motion
(3) Spring/Mass Systems with Forced Oscillations

Today's Goals

(1) Learn how to solve spring/mass systems.

Spring/Mass Systems with Damped Motion

Undamped motion is unrealistic. Instead assume we have a damping force proportional to the instantaneous velocity.

Spring/Mass Systems with Damped Motion

Undamped motion is unrealistic. Instead assume we have a damping force proportional to the instantaneous velocity.

$$
m \frac{d^{2} y}{d t^{2}}+c \frac{d y}{d t}+k y=0
$$

is now our model, where m is the mass, k is the positive spring constant, c is the positive damping constant and $y(t)$ is the position of the mass at time t.

Changing Variables

Let

$$
2 \lambda=\frac{c}{m} \text { and } \omega_{0}^{2}=\frac{k}{m} .
$$

Changing Variables

Let

$$
2 \lambda=\frac{c}{m} \text { and } \omega_{0}^{2}=\frac{k}{m} .
$$

Then our damped motion D.E. becomes $\frac{d^{2} y}{d t^{2}}+2 \lambda \frac{d y}{d t}+\omega_{0}^{2} y=0$

Changing Variables

Let

$$
2 \lambda=\frac{c}{m} \text { and } \omega_{0}^{2}=\frac{k}{m} .
$$

Then our damped motion D.E. becomes $\frac{d^{2} y}{d t^{2}}+2 \lambda \frac{d y}{d t}+\omega_{0}^{2} y=0$
and the roots of the Aux. Equation become

$$
m_{1}=-\lambda+\sqrt{\lambda^{2}-\omega_{0}^{2}} \text { and } m_{2}=-\lambda-\sqrt{\lambda^{2}-\omega_{0}^{2}}
$$

Case 1: Overdamped

If $\lambda^{2}-\omega_{0}^{2}>0$ the system is overdamped since c is large when compared to k. In this case the solution is

$$
y=e^{-\lambda t}\left(c_{1} e^{\sqrt{\lambda^{2}-\omega_{0}^{2}} t}+c_{2} e^{\sqrt{\lambda^{2}-\omega_{0}^{2}} t}\right) .
$$

Case 2: Critically Damped

If $\lambda^{2}-\omega_{0}^{2}=0$ the system is critically damped since a slight decrease in the damping force would result in oscillatory motion. In this case the solution is

$$
y=e^{-\lambda t}\left(c_{1}+c_{2} t\right)
$$

Case 3: Underdamped

If $\lambda^{2}-\omega_{0}^{2}<0$ the system is underdamped since k is large when compared to c. In this case the solution is

$$
y=e^{-\lambda t}\left(c_{1} \cos \left(\sqrt{\omega_{0}^{2}-\lambda^{2}} t\right)+c_{2} \sin \left(\sqrt{\omega_{0}^{2}-\lambda^{2}} t\right)\right)
$$

Example

A 4 meter spring measures 8 meters long after a force of 16 newtons acts to it. A mass of 2 kilograms is attached to the spring. The medium through which the mass moves offers a damping force equal to 2 times the instantaneous velocity. Find the equation of motion if the mass is initially released from the equilibrium position with a downward velocity of 5 meters $/ \mathrm{sec}$.

Forced Oscillations

When an external force $f(t)$ acts on the mass on a spring, the equation for our model of motion becomes

$$
m \frac{d^{2} y}{d t^{2}}=-c \frac{d y}{d t}-k y+f(t)
$$

Forced Oscillations

When an external force $f(t)$ acts on the mass on a spring, the equation for our model of motion becomes

$$
m \frac{d^{2} y}{d t^{2}}=-c \frac{d y}{d t}-k y+f(t)
$$

or in the language of λ and ω,

$$
\frac{d^{2} y}{d t^{2}}+2 \lambda \frac{d y}{d t}+\omega^{2} y=\frac{f(t)}{m}
$$

Example

When a mass of 2 kg is attached to a spring whose constant is $32 \mathrm{~N} / \mathrm{m}$, it comes to rest at equilibrium position. Starting at $t=0$ a force of $f(t)=65 e^{-2 t}$ is applied to the system. In the absence of damping, find the equation of motion.

Example

When a mass of 2 kg is attached to a spring whose constant is $32 \mathrm{~N} / \mathrm{m}$, it comes to rest at equilibrium position. Starting at $t=0$ a force of $f(t)=65 e^{-2 t}$ is applied to the system. In the absence of damping, find the equation of motion.

What is the amplitude of the oscillation after a very long time?

Resonance

When a mass of 5 kg is attached to a spring whose constant is $125 \mathrm{~N} / \mathrm{m}$, it comes to rest at equilibrium position. Starting at $t=0$ a force of $f(t)=2 \cos (5 t)$ is applied to the system. In the absence of damping, find the equation of motion.

Resonance

When a mass of 5 kg is attached to a spring whose constant is $125 \mathrm{~N} / \mathrm{m}$, it comes to rest at equilibrium position. Starting at $t=0$ a force of $f(t)=2 \cos (5 t)$ is applied to the system. In the absence of damping, find the equation of motion.

What is the amplitude of the oscillation after a very long time?

