Math 240: Systems of Differential Equations

Ryan Blair
University of Pennsylvania

Friday November 9, 2012

Outline

(1) Today's Goals
(2) Diagonalizability Theorems
(3) Linear Systems

4 Solutions to Linear Systems
(5) Distinct Eigenvalues

Today's Goals

Combine linear algebra and differential equations to study systems of differential equations.
(1) Define systems of differential equations
(2) Develop the notion of Linear Independence.
(3) Develop the notion of General Solution.

Diagonalizability Theorems

Theorem
 A $n \times n$ matrix is diagonalizable if and only if it has n linearly independent eigenvectors.

Theorem

If an $n \times n$ matrix has n distinct eigenvalues, then it is diagonalizable.

Diagonalizability Theorems

> Theorem
> A $n \times n$ matrix is diagonalizable if and only if it has n linearly independent eigenvectors.

Theorem

If an $n \times n$ matrix has n distinct eigenvalues, then it is diagonalizable.
Note:Not all diagonalizable matrices have n distinct eigenvalues.

Linear systems

Definition

A system of differential equations is of the form

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t)
$$

Where $A(t)$ is an $n \times n$ matrix of functions, both $\mathbf{x}(t)$ and $\mathbf{b}(t)$ are $n \times 1$ matrices of functions and $\mathbf{x}^{\prime}(t)$ is the $n \times 1$ matrix of derivatives of entries in $\mathbf{x}(t)$.
A solution

Example:

$$
\begin{aligned}
& x_{1}^{\prime}(t)=\cos (t) x_{1}(t)-\sin (t) x_{2}(t) \\
& x_{2}^{\prime}(t)=\sin (t) x_{1}(t)+\cos (t) x_{2}(t)
\end{aligned}
$$

Solutions

Definition

Given a system $\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t)$ a solution vector is an $n \times 1$ column matrix with differentialable functions as entries that satisfies the system.

Solutions

Definition

Given a system $\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t)$ a solution vector is an $n \times 1$ column matrix with differentialable functions as entries that satisfies the system.

Definition

The following is an initial value problem for a first order system $\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t)$ and $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$

Solutions

Definition

Given a system $\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t)$ a solution vector is an $n \times 1$ column matrix with differentialable functions as entries that satisfies the system.

Definition

The following is an initial value problem for a first order system $\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)+\mathbf{b}(t)$ and $\mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}$

Note: As long as everything in sight is continuous on an interval I containing t_{0}, then there exists a unique solution to the above IVP.

Solutions to Linear Systems

Let $V_{n}(t)$ be the set of $n \times 1$ matrices with entries consisting of functions. $V_{n}(t)$ is a vector space under the natural operations of vector addition and scalar multiplication.

Theorem

Solutions to homogeneous systems of differential equations of the form

$$
\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)
$$

form a vector subspace of $V_{n}(t)$.

Definition

Given an $n \times n$ homogeneous solution $\mathbf{x}^{\prime}(t)=A(t) \mathbf{x}(t)$, a fundamental solution is a set of n linearly independent solutions.

The Wronskian

Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be n solution vectors to a homogeneous system on an interval I. They are linearly independent if and only if their Wronskian is non-zero for every t in the interval.

Guessing a Solution

Given a constant coefficient, linear, homogeneous, first-order system

$$
x^{\prime}=A x
$$

our intuition prompts us to guess a solution vector of the form

$$
\mathbf{x}=\left(\begin{array}{c}
k_{1} \\
k_{2} \\
\vdots \\
k_{n}
\end{array}\right) e^{\lambda t}=\mathbf{K} e^{\lambda t}
$$

Guessing a Solution

Given a constant coefficient, linear, homogeneous, first-order system

$$
x^{\prime}=A x
$$

our intuition prompts us to guess a solution vector of the form

$$
\mathbf{x}=\left(\begin{array}{c}
k_{1} \\
k_{2} \\
\vdots \\
k_{n}
\end{array}\right) e^{\lambda t}=\mathbf{K} e^{\lambda t}
$$

Hence, we can find such a solution vector iff K is an eigenvector for A with eigenvalue λ.

General Solution with Distinct Real Eigenvalues

Theorem
Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be n distinct real eigenvalues of the $n \times n$ coefficient matrix \mathbf{A} of the homogeneous system $\mathbf{X}=\mathbf{A X}$, and let $\mathbf{K}_{1}, \mathbf{K}_{2}, \ldots, \mathbf{K}_{n}$ be the corresponding eigenvectors. Then the general solution on $(-\infty, \infty)$ is

$$
\mathbf{X}=c_{1} \mathbf{K}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{K}_{2} e^{\lambda_{2} t}+\ldots+c_{n} \mathbf{K}_{n} e^{\lambda_{n} t}
$$

where the c_{i} are arbitrary constants.

General Solution with Distinct Real Eigenvalues

Theorem

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be n distinct real eigenvalues of the $n \times n$ coefficient matrix \mathbf{A} of the homogeneous system $\mathbf{X}=\mathbf{A X}$, and let $\mathbf{K}_{1}, \mathbf{K}_{2}, \ldots, \mathbf{K}_{n}$ be the corresponding eigenvectors. Then the general solution on $(-\infty, \infty)$ is

$$
\mathbf{X}=c_{1} \mathbf{K}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{K}_{2} e^{\lambda_{2} t}+\ldots+c_{n} \mathbf{K}_{n} e^{\lambda_{n} t}
$$

where the c_{i} are arbitrary constants.
Exercise: Solve the linear system $X^{\prime}=A X$ if

$$
A=\left(\begin{array}{ll}
-1 & 2 \\
-7 & 8
\end{array}\right)
$$

