Math 240: Diagonalizability

Ryan Blair

University of Pennsylvania

Wednesday November 7, 2012

Outline

Notes on Eigenvalues

② Diagonalizability

Today's Goals

- Be able to diagonalize matrices.
- Be able to use diagonalization to compute high powers of matrices.

Important Examples

- A matrix may have no real eigenvalues
- A matrix may have multiple eigenvectors for a single eigenvalue.
- **3** A $n \times n$ matrix may not have n linearly independent eigenvectors.

Diagonalizability

Definition

An $n \times n$ matrix A is similar to an $n \times n$ B if there exists an invertible matrix P such that $P^{-1}AP = B$

Definition

An $n \times n$ matrix A is **diagonalizable** if A is similar to a diagonal matrix.

When A is diagonalizable, the columns of P are the eigenvectors of A and the diagonal entries of D are the corresponding eigenvalues.

Diagonalizability

Definition

An $n \times n$ matrix A is similar to an $n \times n$ B if there exists an invertible matrix P such that $P^{-1}AP = B$

Definition

An $n \times n$ matrix A is **diagonalizable** if A is similar to a diagonal matrix.

When A is diagonalizable, the columns of P are the eigenvectors of A and the diagonal entries of D are the corresponding eigenvalues.

Example: Find an invertible matrix P and a diagonal matrix D so that $P^{-1}AP = D$.

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & 3 \\ 0 & 0 & 2 \end{pmatrix}$$

Diagonalizability Theorems

Theorem

A $n \times n$ matrix is diagonalizable if and only if it has n linearly independent eigenvectors.

Theorem

If an $n \times n$ matrix has n distinct eigenvalues, then it is diagonalizable.

Diagonalizability Theorems

Theorem

A $n \times n$ matrix is diagonalizable if and only if it has n linearly independent eigenvectors.

Theorem

If an $n \times n$ matrix has n distinct eigenvalues, then it is diagonalizable.

Note: Not all diagonalizable matrices have n distinct eigenvalues.

Using Diagonalization to Find Powers

If a matrix is diagonalizable, there is a very fast way to compute its powers.

Using Diagonalization to Find Powers

If a matrix is diagonalizable, there is a very fast way to compute its powers. If A is diagonalizable, then

$$A^n = (PDP^{-1})^n = PD^nP^{-1}$$

.

Using Diagonalization to Find Powers

If a matrix is diagonalizable, there is a very fast way to compute its powers. If A is diagonalizable, then

$$A^n = (PDP^{-1})^n = PD^nP^{-1}$$

._

Example: Given

$$A = \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & -1 & 3 \\ 0 & 0 & 2 \end{array}\right)$$

compute A^8 .