# Math 240: Diagonalizability 

Ryan Blair<br>University of Pennsylvania

Wednesday November 7, 2012

## Outline

(1) Notes on Eigenvalues
(2) Diagonalizability

## Today's Goals

(1) Be able to diagonalize matrices.
(2) Be able to use diagonalization to compute high powers of matrices.

## Important Examples

(1) A matrix may have no real eigenvalues
(2) A matrix may have multiple eigenvectors for a single eigenvalue.
(3) A $n \times n$ matrix may not have $n$ linearly independent eigenvectors.

## Diagonalizability

## Definition

An $n \times n$ matrix $A$ is similar to an $n \times n B$ if there exists an invertible matrix $P$ such that $P^{-1} A P=B$

## Definition

An $n \times n$ matrix $A$ is diagonalizable if $A$ is similar to a diagonal matrix.
When $A$ is diagonalizable, the columns of $P$ are the eigenvectors of $A$ and the diagonal entries of $D$ are the corresponding eigenvalues.

## Diagonalizability

## Definition

An $n \times n$ matrix $A$ is similar to an $n \times n B$ if there exists an invertible matrix $P$ such that $P^{-1} A P=B$

## Definition

An $n \times n$ matrix $A$ is diagonalizable if $A$ is similar to a diagonal matrix.
When $A$ is diagonalizable, the columns of $P$ are the eigenvectors of $A$ and the diagonal entries of $D$ are the corresponding eigenvalues.
Example: Find an invertible matrix $P$ and a diagonal matrix $D$ so that $P^{-1} A P=D$.
$A=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & -1 & 3 \\ 0 & 0 & 2\end{array}\right)$

## Diagonalizability Theorems

## Theorem <br> A $n \times n$ matrix is diagonalizable if and only if it has $n$ linearly independent eigenvectors.

## Theorem

If an $n \times n$ matrix has $n$ distinct eigenvalues, then it is diagonalizable.

## Diagonalizability Theorems

> Theorem
> A $n \times n$ matrix is diagonalizable if and only if it has $n$ linearly independent eigenvectors.

## Theorem

If an $n \times n$ matrix has $n$ distinct eigenvalues, then it is diagonalizable.
Note:Not all diagonalizable matrices have $n$ distinct eigenvalues.

## Using Diagonalization to Find Powers

If a matrix is diagonalizable, there is a very fast way to compute its powers.

## Using Diagonalization to Find Powers

If a matrix is diagonalizable, there is a very fast way to compute its powers. If $A$ is diagonalizable, then

$$
A^{n}=\left(P D P^{-1}\right)^{n}=P D^{n} P^{-1}
$$

## Using Diagonalization to Find Powers

If a matrix is diagonalizable, there is a very fast way to compute its powers.
If $A$ is diagonalizable, then

$$
A^{n}=\left(P D P^{-1}\right)^{n}=P D^{n} P^{-1}
$$

Example: Given
$A=\left(\begin{array}{ccc}1 & 0 & 1 \\ 0 & -1 & 3 \\ 0 & 0 & 2\end{array}\right)$
compute $A^{8}$.

