Math 240: Eigenvalues and Linear Transformations of \mathbb{R}^{2}

Ryan Blair

University of Pennsylvania

Monday November 5, 2012

Outline

(1) Invertible Linear Transformations from \mathbb{R}^{2} to \mathbb{R}^{2}
(2) Eigenvalue and Eigenvector

Today's Goals

(1) Know how to decompose linear transformations of \mathbb{R}^{2} into stretches, reflections and shears.
(2) Know how to calculate eigenvalues and eigenvectors.

How to build any invertible linear transformation

Theorem

Any linear transformations from \mathbb{R}^{2} to \mathbb{R}^{2} with invertible matrix is obtained by composing reflections, stretches and shears.

Row Operations as Linear Transformations for 2×2 Matrices

Reflections

$$
P_{12}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Stretching

$$
M_{1}(k)=\left(\begin{array}{cc}
k & 0 \\
0 & 1
\end{array}\right), M_{2}(k)=\left(\begin{array}{cc}
1 & 0 \\
0 & k
\end{array}\right)
$$

Shearing

$$
A_{21}(k)=\left(\begin{array}{cc}
1 & k \\
0 & 1
\end{array}\right), A_{12}(k)=\left(\begin{array}{cc}
1 & 0 \\
k & 1
\end{array}\right)
$$

Eigenvalue and Eigenvector

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $A x=\lambda x$ is called an eigenvector. If $A x=\lambda x$ has a non-trivial solution, λ is an eigenvalue.

Eigenvalue and Eigenvector

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $A x=\lambda x$ is called an eigenvector. If $A x=\lambda x$ has a non-trivial solution, λ is an eigenvalue.

Only square matrices have eigenvectors.

Eigenvalue and Eigenvector

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $A x=\lambda x$ is called an eigenvector. If $A x=\lambda x$ has a non-trivial solution, λ is an eigenvalue.

Only square matrices have eigenvectors.

Key idea:Eigenvectors are vectors sent to scalar copies of themselves under the linear map corresponding to A.

How to find Eigenvalues

$$
\begin{aligned}
& \text { To find eigenvalues we want to solve } A x=\lambda x \text { for } \lambda \text {. } \\
& A x=\lambda x \\
& A x-\lambda x=0 \\
& \left(A-\lambda I_{n}\right) x=0
\end{aligned}
$$

How to find Eigenvalues

To find eigenvalues we want to solve $A x=\lambda x$ for λ.
$A x=\lambda x$
$A x-\lambda x=0$
$\left(A-\lambda I_{n}\right) x=0$
For the above to have more than just a trivial solution, $\left(A-\lambda I_{n}\right)$ must not be invertible.

How to find Eigenvalues

To find eigenvalues we want to solve $A x=\lambda x$ for λ.
$A x=\lambda x$
$A x-\lambda x=0$
$\left(A-\lambda I_{n}\right) x=0$
For the above to have more than just a trivial solution, $\left(A-\lambda I_{n}\right)$ must not be invertible.

Hence, to find the eigenvalues, we solve the polynomial equation $\operatorname{det}\left(A-\lambda I_{n}\right)=0$ called the characteristic equation.

How to find Eigenvalues

To find eigenvalues we want to solve $A x=\lambda x$ for λ.
$A x=\lambda x$
$A x-\lambda x=0$
$\left(A-\lambda I_{n}\right) x=0$
For the above to have more than just a trivial solution, $\left(A-\lambda I_{n}\right)$ must not be invertible.

Hence, to find the eigenvalues, we solve the polynomial equation $\operatorname{det}\left(A-\lambda I_{n}\right)=0$ called the characteristic equation.

For each eigenvalue λ, solve the linear system $\left(A-\lambda I_{n}\right) x=0$ to find the eigenvectors.

