Math 240: Linear Differential Equations

Ryan Blair

University of Pennsylvania

Wednesday November 28, 2012

Outline

(1) Today's Goals
(2) Solutions to homogeneous equations
(3) Solutions to nonhomogeneous equations
(4) Solutions to constant coefficient homogeneous equations

Today's Goals

Understand the form of solutions to the following types of higher order, linear differential equations
(1) Initial Value Problems
(2) Homogeneous and Nonhomogeneous Equations.

Solutions as a subspace

[^0]
General Solutions to Nonhomogeneous Linear D.E.s

Theorem

Let y_{p} be any particular solution of the nonhomogeneous linear nth-order differential equation on an interval I. Let $y_{1}, y_{2}, \ldots, y_{n}$ be a fundamental set of solutions to the associated homogeneous differential equation. Then the general solution to the nonhomogeneous equation on the interval is

$$
y=c_{1} y_{1}(x)+c_{2} y_{2}(x)+\ldots+c_{n} y_{n}(x)+y_{p}
$$

where the c_{i} are arbitrary constants.

A Motivating Example

Our goal is to solve constant coefficient linear homogeneous differential equations.

A Motivating Example

Our goal is to solve constant coefficient linear homogeneous differential equations.

What if we guess $y=e^{m x}$ as a solution to $y^{\prime \prime}+y^{\prime}-6 y=0$?

A Motivating Example

Our goal is to solve constant coefficient linear homogeneous differential equations.

What if we guess $y=e^{m x}$ as a solution to $y^{\prime \prime}+y^{\prime}-6 y=0$?
What if we guess $y=e^{m x}$ as a solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$?

A Motivating Example

Our goal is to solve constant coefficient linear homogeneous differential equations.

What if we guess $y=e^{m x}$ as a solution to $y^{\prime \prime}+y^{\prime}-6 y=0$?
What if we guess $y=e^{m x}$ as a solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$?
In this case, we get $e^{m x}\left(a m^{2}+b m+c\right)=0$. There are three possibilities for the roots of a quadratic equation.

Case 1: Distinct Roots

If $a m^{2}+b m+c$ has distinct roots m_{1} and m_{2}, then the general solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}
$$

Case 2: Repeated Roots

If $a m^{2}+b m+c$ has a repeated root m_{1}, then the general solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y=c_{1} e^{m_{1} x}+c_{2} x e^{m_{1} x}
$$

Case 3: Complex Roots

If $a m^{2}+b m+c$ has complex roots $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$, then the general solution to $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y=c_{1} e^{\alpha x} \cos (\beta x)+c_{2} e^{\alpha x} \sin (\beta x)
$$

Auxiliary Equations

Given a linear homogeneous constant-coefficient differential equation
$a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1} \frac{d y}{d x}+a_{0} y=0$,
the Auxiliary Equation is
$a_{n} m^{n}+a_{n-1} m^{n-1}+\ldots a_{1} m+a_{0}=0$.

Auxiliary Equations

Given a linear homogeneous constant-coefficient differential equation
$a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots a_{1} \frac{d y}{d x}+a_{0} y=0$,
the Auxiliary Equation is
$a_{n} m^{n}+a_{n-1} m^{n-1}+\ldots a_{1} m+a_{0}=0$.

The Auxiliary Equation determines the general solution.

General Solution from the Auxiliary Equation

(1) If m is a real root of the auxiliary equation of multiplicity k then $e^{m x}, x e^{m x}, x^{2} e^{m x}, \ldots, x^{k-1} e^{m x}$ are linearly independent solutions.

General Solution from the Auxiliary Equation

(1) If m is a real root of the auxiliary equation of multiplicity k then $e^{m x}, x e^{m x}, x^{2} e^{m x}, \ldots, x^{k-1} e^{m x}$ are linearly independent solutions.
(2) If $(\alpha+i \beta)$ and $(\alpha+i \beta)$ are a roots of the auxiliary equation of multiplicity k then
$e^{\alpha x} \cos (\beta x), x e^{\alpha x} \cos (\beta x), \ldots, x^{k-1} e^{\alpha x} \cos (\beta x)$ and $e^{\alpha x} \sin (\beta x), x e^{\alpha x} \sin (\beta x), \ldots, x^{k-1} e^{\alpha x} \sin (\beta x)$ are linearly independent solutions.

[^0]: Theorem
 (The Superposition Principle) The set of solutions to an nth-order homogeneous differential equation on an interval I form an n-dimensional vector subspace of $C^{n}(I)$. A basis for this space is called a fundamental set.

