Math 240: Linear Differential Equations

Ryan Blair

University of Pennsylvania

Monday November 26, 2012

Ryan Blair (U Penn)

Math 240: Linear Differential Equations Monday November 26, 2012 1 / 16

ヨト・イヨト

2 Solutions to homogeneous equations

- Solutions to nonhomogeneous equations
- 4 Solutions to constant coefficient homogeneous equations

化氯化化氯化

590

Understand the form of solutions to the following types of higher order, linear differential equations

- Initial Value Problems
- Item Bound State And Monhomogeneous Equations.

イロト 不得 トイヨト イヨト 二日

Differential equations

Definition

A differential equation is any equation involving a function, its derivatives.

Definition

A solution to a differential equation is any function that satisfies the equation.

4 ∃ ≥ < 4 ∃</p>

A Few Famous Differential Equations

- Einstein's field equation in general relativity
- The Navier-Stokes equations in fluid dynamics
- Verhulst equation biological population growth
- The Black-Scholes PDE models financial markets

A B F A B F

Higher Order Initial Value Problems

Definition

A nth-order linear differential equation is

Solve:
$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + \dots a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

(日) (同) (日) (日) (日)

Higher Order Initial Value Problems

Definition

A nth-order linear differential equation is

Solve :
$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + ...a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

an **nth-order initial value problem**(IVP) is the above equation together with the following constraint

Subject to :
$$y(x_0) = y_0$$
, $y'(x_0) = y_1$, ..., $y^{(n-1)}(x_0) = y_{n-1}$

(4 回) (4 回) (4 回)

Higher Order Initial Value Problems

Definition

A nth-order linear differential equation is

Solve:
$$a_n(x)\frac{d^n y}{dx^n} + a_{n-1}(x)\frac{d^{n-1}y}{dx^{n-1}} + ...a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

an **nth-order initial value problem**(IVP) is the above equation together with the following constraint

Subject to:
$$y(x_0) = y_0, \ y'(x_0) = y_1, \ ... \ , y^{(n-1)}(x_0) = y_{n-1}$$

If g(x) = 0, then we say the differential equation is **homogeneous**.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Existence and Uniqueness

Theorem

Let $a_n(x)$, $a_{n-1}(x)$, ..., $a_1(x)$, $a_0(x)$, and g(x) be continuous on an interval I, and let $a_n(x) \neq 0$ for every x in this interval. If $x = x_0$ is any point in this interval, then a solution y(x) of the initial value problem exists on the interval and is unique.

(B) < (B)</p>

Existence and Uniqueness

Theorem

Let $a_n(x), a_{n-1}(x), ..., a_1(x), a_0(x)$, and g(x) be continuous on an interval I, and let $a_n(x) \neq 0$ for every x in this interval. If $x = x_0$ is any point in this interval, then a solution y(x) of the initial value problem exists on the interval and is unique.

Example:Does the following IVP have a unique solution? If so, on what intervals?

$$xy''' + y'' - y' - cos(x)y = 9$$
 with $y(2) = 0$, $y'(2) = 0$ and $y''(2) = 0$

★ □ + ★ □ + ↓ □ Ξ

Solutions as a subspace

Theorem

(The Superposition Principle) The set of solutions to an nth-order homogeneous differential equation on an interval I form an n-dimensional vector subspace of $C^n(I)$. A basis for this space is called a **fundamental set**.

Example: Find the fundamental set for x'' + x = 0 using you intuition from calculus.

ト イヨト イヨト ニヨ

Definition

Suppose each of the functions $f_1(x), f_2(x), ..., f_n(x)$ possess at least n-1 derivatives. The determinant

$$W(f_1, f_2, ..., f_n) = \begin{vmatrix} f_1 & f_2 & \dots & f_n \\ f'_1 & f'_2 & \dots & f'_n \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \dots & f_n^{(n-1)} \end{vmatrix}$$

is called the Wronskian of the functions.

(김 글 대 김 대 글 대

General Solutions to Nonhomogeneous Linear D.E.s

Theorem

Let y_p be any particular solution of the nonhomogeneous linear nth-order differential equation on an interval I. Let $y_1, y_2, ..., y_n$ be a fundamental set of solutions to the associated homogeneous differential equation. Then the general solution to the nonhomogeneous equation on the interval is

$$y = c_1 y_1(x) + c_2 y_2(x) + ... + c_n y_n(x) + y_p$$

where the c_i are arbitrary constants.

A B + A B +

Our goal is to solve **constant coefficient** linear homogeneous differential equations.

イロト 不得 トイヨト イヨト 二日

Our goal is to solve **constant coefficient** linear homogeneous differential equations.

What if we guess $y = e^{mx}$ as a solution to y'' + y' - 6y = 0?

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Our goal is to solve **constant coefficient** linear homogeneous differential equations.

What if we guess $y = e^{mx}$ as a solution to y'' + y' - 6y = 0?

What if we guess $y = e^{mx}$ as a solution to ay'' + by' + cy = 0?

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Our goal is to solve **constant coefficient** linear homogeneous differential equations.

What if we guess $y = e^{mx}$ as a solution to y'' + y' - 6y = 0?

What if we guess $y = e^{mx}$ as a solution to ay'' + by' + cy = 0?

In this case, we get $e^{mx}(am^2 + bm + c) = 0$. There are three possibilities for the roots of a quadratic equation.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シック

Case 1: Distinct Roots

If $am^2 + bm + c$ has distinct roots m_1 and m_2 , then the general solution to ay'' + by' + cy = 0 is

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Case 2: Repeated Roots

If $am^2 + bm + c$ has a repeated root m_1 , then the general solution to ay'' + by' + cy = 0 is

$$y = c_1 e^{m_1 x} + c_2 x e^{m_1 x}$$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ < ○

Case 3: Complex Roots

If $am^2 + bm + c$ has complex roots $m_1 = \alpha + i\beta$ and $m_2 = \alpha - i\beta$, then the general solution to ay'' + by' + cy = 0 is

$$y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x)$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Auxiliary Equations

Given a linear homogeneous constant-coefficient differential equation

$$a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots a_1 \frac{dy}{dx} + a_0 y = 0,$$

the Auxiliary Equation is

$$a_n m^n + a_{n-1} m^{n-1} + \dots a_1 m + a_0 = 0.$$

(本語) (本語) (本語) (二語)

Auxiliary Equations

Given a linear homogeneous constant-coefficient differential equation

$$a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots a_1 \frac{dy}{dx} + a_0 y = 0,$$

the Auxiliary Equation is

$$a_n m^n + a_{n-1} m^{n-1} + \dots a_1 m + a_0 = 0.$$

The Auxiliary Equation determines the general solution.

▲日▼ ▲母▼ ▲日▼ ▲日▼ ■ ろの⊙

Solutions to constant coefficient homogeneous equations

General Solution from the Auxiliary Equation

If m is a real root of the auxiliary equation of multiplicity k then e^{mx} , xe^{mx} , x^2e^{mx} , ..., $x^{k-1}e^{mx}$ are linearly independent solutions.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - シック

General Solution from the Auxiliary Equation

- If *m* is a real root of the auxiliary equation of multiplicity *k* then e^{mx} , xe^{mx} , x^2e^{mx} , ..., $x^{k-1}e^{mx}$ are linearly independent solutions.
- If (α + iβ) and (α + iβ) are a roots of the auxiliary equation of multiplicity k then
 e^{αx} cos(βx), xe^{αx} cos(βx), ..., x^{k-1}e^{αx} cos(βx) and
 e^{αx} sin(βx), xe^{αx} sin(βx), ..., x^{k-1}e^{αx} sin(βx) are linearly independent solutions.

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ ○ ○