Math 240: Linear Transformations of \mathbb{R}^2

Ryan Blair

University of Pennsylvania

Friday November 2, 2012

Ryan Blair (U Penn)

Math 240: Linear Transformations of \mathbb{R}^2

Friday November 2, 2012

E 990

1/6

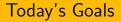
イロト イポト イヨト イヨト

2 Linear Transformations from \mathbb{R}^2 to \mathbb{R}^2 .

Ryan Blair (U Penn)

Math 240: Linear Transformations of \mathbb{R}^2

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■ ⑦ Q ○ Priday November 2, 2012 2 / 6



• Know linear transformations of \mathbb{R}^2 .

Matrices ARE linear transformations

Definition

A mapping $T: V \rightarrow W$ is a **linear transformation** if the following hold:

$$T(u+v) = T(u) + T(v) \text{ for all } u, v \in V$$

2 T(cv) = cT(v) for all $v \in V$ and all scalars c.

Theorem

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. T is completely described by

$$T(v) = Av$$

where A is the $m \times n$ matrix

$$A = [T(\mathbf{e}_1), T(\mathbf{e}_2), ..., T(\mathbf{e}_n)]$$

and $\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n$ are the standard basis vectors in \mathbb{R}^n .

Linear Transformations from \mathbb{R}^2 to \mathbb{R}^2 .

Linear Transformations from \mathbb{R}^2 to \mathbb{R}^2 .

Reflections

$$\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

Stretching

$$\left(\begin{array}{cc}k&0\\0&1\end{array}\right),\left(\begin{array}{cc}1&0\\0&k\end{array}\right)$$

Shearing

$$\left(\begin{array}{cc}1&k\\0&1\end{array}\right), \left(\begin{array}{cc}1&0\\k&1\end{array}\right)$$

1

590

5/6

イロト イポト イヨト イヨト

How to build any invertible linear transformation

Definition

If T and R are linear transformations from \mathbb{R}^n to \mathbb{R}^n with matrices A and B respectively, then their composition $T \circ R$ is a linear transforation with matrix AB.

Theorem

Any linear transformations from \mathbb{R}^2 to \mathbb{R}^2 with invertible matrix is obtained by composing reflections, stretches and shears.