Math 240: Systems of Differential Equations, Complex and Repeated Eigenvalues

Ryan Blair

University of Pennsylvania

Monday November 19, 2012

Outline

(1) Today's Goals
(2) Distinct Eigenvalues
(3) Complex Eigenvalues

4 Repeated Eigenvalues

Today's Goals

(1) Solve linear systems of differential equations with Complex Eigenvalues.
(2) Solve linear systems of differential equations with non-diagonalizable coefficient matrices.

General Solution with Distinct Real Eigenvalues

Theorem

Let $A \in M_{n}(\mathbb{R})$. If A has n linearly independent eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$, with real eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ (not necessarily distinct), then the general solution to $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ on any interval is

$$
\mathbf{X}=c_{1} v_{1} e^{\lambda_{1} t}+c_{2} v_{2} e^{\lambda_{2} t}+\ldots+c_{n} v_{n} e^{\lambda_{n} t}
$$

Exercise: Solve the linear system $X^{\prime}=A X$ if

$$
A=\left(\begin{array}{cc}
-8 & -1 \\
16 & 0
\end{array}\right)
$$

Complex Eigenvalues

Theorem

Let $\lambda=a+b i$ be a complex eigenvalue of A with eigenvectors v_{1}, \ldots, v_{k} where $v_{j}=r_{j}+i s_{j}$. Then the $2 k$ real valued linearly independent solutions to $x^{\prime}=A x$ are:

$$
e^{a t}\left(\sin (b t) r_{1}+\cos (b t) s_{1}\right), \ldots, e^{a t}\left(\sin (b t) r_{k}+\cos (b t) s_{k}\right)
$$

and

$$
e^{a t}\left(\cos (b t) r_{1}-\sin (b t) s_{1}\right), \ldots, e^{a t}\left(\cos (b t) r_{k}-\sin (b t) s_{k}\right)
$$

Repeated Eigenvalues

In a $n \times n$, constant-coefficient, linear system there are two possibilities for an eigenvalue λ of multiplicity 2 .
(1) λ has two linearly independent eigenvectors \mathbf{K}_{1} and \mathbf{K}_{2}.
(2) λ has a single eigenvector K associated to it.

Repeated Eigenvalues

In a $n \times n$, constant-coefficient, linear system there are two possibilities for an eigenvalue λ of multiplicity 2 .
(1) λ has two linearly independent eigenvectors \mathbf{K}_{1} and \mathbf{K}_{2}.
(2) λ has a single eigenvector K associated to it.

In the first case, there are linearly independent solutions $\mathbf{K}_{1} e^{\lambda t}$ and $\mathbf{K}_{2} e^{\lambda t}$.

Repeated Eigenvalues

In a $n \times n$, constant-coefficient, linear system there are two possibilities for an eigenvalue λ of multiplicity 2 .
(1) λ has two linearly independent eigenvectors \mathbf{K}_{1} and \mathbf{K}_{2}.
(2) λ has a single eigenvector K associated to it.

In the first case, there are linearly independent solutions $\mathbf{K}_{1} e^{\lambda t}$ and $\mathbf{K}_{2} e^{\lambda t}$.
In the second case, there are linearly independent solutions $\mathbf{K} e^{\lambda t}$ and

$$
\left[\mathbf{K} t e^{\lambda t}+\mathbf{P} e^{\lambda t}\right]
$$

where we find \mathbf{P} be solving $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{P}=\mathbf{K} . \mathbf{P}$ is a generalized eigenvector.

In the second case, there are linearly independent solutions $\mathbf{K} e^{\lambda t}$ and

$$
\left[\mathbf{K} t e^{\lambda t}+\mathbf{P} e^{\lambda t}\right]
$$

where we find \mathbf{P} be solving $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{P}=\mathbf{K}$ Exercise: Solve the linear system $X^{\prime}=A X$ if

$$
A=\left(\begin{array}{cc}
-8 & -1 \\
16 & 0
\end{array}\right)
$$

How Bad Can it Get?

In general, you will only be asked to solve systems $X^{\prime}=A X$ if the multiplicity of the eigenvalues of A is at most 1 more than the number of linearly independent eigenvectors for that value. In this case you need to find at most one vector \mathbf{P} such that $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{P}=\mathbf{K}$

How Bad Can it Get?

In general, you will only be asked to solve systems $X^{\prime}=A X$ if the multiplicity of the eigenvalues of A is at most 1 more than the number of linearly independent eigenvectors for that value. In this case you need to find at most one vector \mathbf{P} such that $(\mathbf{A}-\lambda \mathbf{I}) \mathbf{P}=\mathbf{K}$ Exercise: Solve the linear system $X^{\prime}=A X$ if

$$
A=\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

