Math 240: Systems of Differential Equations

Ryan Blair
University of Pennsylvania

Friday November 16, 2012

Outline

(1) Today's Goals

(2) Distinct Eigenvalues

Today's Goals

Combine linear algebra and differential equations to study systems of differential equations.
(1) Solve linear systems of differential equations using Eigenvalues.

If $A \in M_{n}(\mathbb{R})$

Given a constant coefficient, linear, homogeneous, first-order system

$$
x^{\prime}=A x
$$

our intuition prompts us to guess a solution vector of the form

$$
\mathbf{x}=\left(\begin{array}{c}
k_{1} \\
k_{2} \\
\vdots \\
k_{n}
\end{array}\right) e^{\lambda t}=\mathbf{K} e^{\lambda t}
$$

If $A \in M_{n}(\mathbb{R})$

Given a constant coefficient, linear, homogeneous, first-order system

$$
x^{\prime}=A x
$$

our intuition prompts us to guess a solution vector of the form

$$
\mathbf{x}=\left(\begin{array}{c}
k_{1} \\
k_{2} \\
\vdots \\
k_{n}
\end{array}\right) e^{\lambda t}=\mathbf{K} e^{\lambda t}
$$

Hence, we can find such a solution vector iff K is an eigenvector for A with eigenvalue λ.

General Solution with Distinct Real Eigenvalues

Theorem

Let $A \in M_{n}(\mathbb{R})$. If A has n linearly independent eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$, with real eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ (not necessarily distinct), then the general solution to $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ on any interval is

$$
\mathbf{X}=c_{1} v_{1} e^{\lambda_{1} t}+c_{2} v_{2} e^{\lambda_{2} t}+\ldots+c_{n} v_{n} e^{\lambda_{n} t}
$$

General Solution with Distinct Real Eigenvalues

Theorem

Let $A \in M_{n}(\mathbb{R})$. If A has n linearly independent eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$, with real eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ (not necessarily distinct), then the general solution to $\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}$ on any interval is

$$
\mathbf{X}=c_{1} v_{1} e^{\lambda_{1} t}+c_{2} v_{2} e^{\lambda_{2} t}+\ldots+c_{n} v_{n} e^{\lambda_{n} t}
$$

Exercise: Solve the linear system $X^{\prime}=A X$ if

$$
A=\left(\begin{array}{ll}
-1 & 2 \\
-7 & 8
\end{array}\right)
$$

Complex Eigenvalues

```
Theorem
Let }\lambda=a+bi be a complex eigenvalue of A with eigenvectors vi, .., v, v
where v}\mp@subsup{v}{j}{}=\mp@subsup{r}{j}{}+i\mp@subsup{s}{j}{}\mathrm{ . Then the 2k real valued linearly independent solutions
to }\mp@subsup{x}{}{\prime}=Ax\mathrm{ are:
eat}(\operatorname{cos}(bt)\mp@subsup{r}{1}{}+\operatorname{sin}(bt)\mp@subsup{s}{1}{}),\mp@subsup{e}{}{at}(\operatorname{cos}(bt)\mp@subsup{r}{2}{}+\operatorname{sin}(bt)\mp@subsup{s}{2}{}),\ldots,\mp@subsup{e}{}{at}(\operatorname{cos}(bt)\mp@subsup{r}{k}{}+\operatorname{sin}(bt
and
eat}(\operatorname{cos}(bt)\mp@subsup{r}{1}{}-\operatorname{sin}(bt)\mp@subsup{s}{1}{}),\mp@subsup{e}{}{at}(\operatorname{cos}(bt)\mp@subsup{r}{2}{}-\operatorname{sin}(bt)\mp@subsup{s}{2}{}),\ldots,\mp@subsup{e}{}{at}(\operatorname{cos}(bt)\mp@subsup{r}{k}{}-\operatorname{sin}(bt
```

