Math 240: Determinants

Ryan Blair
University of Pennsylvania
Monday October 8, 2012

Outline

(1) Determinants

Today's Goals

(1) Understand the definition of determinant.
(2) Be able to find determinants of matrices.

Determinants of Small Matrices

The determinant of a square matrix is a number that determines invertibility of the matrix.

Definition

Give a 1×1 matrix $A=(a)$, the determinant of A is

$$
\operatorname{det}(A)=|a|=a
$$

Definition

Give a 2×2 matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, the determinant of A is

$$
\operatorname{det}(A)=\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

Permutations

Definition

Given the first n positive integers $1,2, \ldots, \mathrm{n}$. A permutation is any arrangement of these integers in a specific order $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$.

Definition

Given a permutation $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$, if $p_{i}>p_{j}$ with $i<j$ we say the pair $\left(p_{i}, p_{j}\right)$ is an inversion.

Definition

Let $N\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ be the total number of inversions for the permutation $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$. If $N\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ is even we say $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ is even. If $N\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ is odd we say $\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ is odd.

Determinants

Definition

Let σ be a function from the set of permutations to $\{1,-1\}$ such that

$$
\sigma\left(p_{1}, p_{2}, \ldots, p_{n}\right)=(-1)^{N\left(p_{1}, p_{2}, \ldots, p_{n}\right)}
$$

Definition

Let $A=\left(a_{i, j}\right)$ be an $n \times n$ matrix. The determinant of A is

$$
\operatorname{det}(A)=\Sigma \sigma\left(p_{1}, p_{2}, \ldots, p_{n}\right) a_{1, p_{1}} a_{2, p_{2}} \ldots a_{n, p_{n}}
$$

where the sum is over all n ! distinct permutations on n numbers.

Big Theorem

Theorem

An $n \times n$ matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$.

