Math 240: Inverses

Ryan Blair

University of Pennsylvania
Friday October 5, 2012

Outline

(1) Matrix Inverse
(2) Properties of Inverses
(3) Solving a Linear System Using Inverses

Today's Goals

(1) Be able to find the inverse of a matrix or show it has no inverse.
(2) Know the properties of inverses.
(3) Be able to solve systems of linear equations using matrices.

Matrix Inverse

Definition

An $n \times n$ matrix A is invertible if there exists an $n \times n$ matrix B such that

$$
A B=B A=I_{n} .
$$

In this case, B is the inverse of A.

Matrix Inverse

Definition

An $n \times n$ matrix A is invertible if there exists an $n \times n$ matrix B such that

$$
A B=B A=I_{n} .
$$

In this case, B is the inverse of A.
(1) NOT every matrix is invertible.
(2) A matrix that is not invertible is called singular.
(3) If A is invertible, its inverse is denoted A^{-1}.

Matrix Inverse

Definition

An $n \times n$ matrix A is invertible if there exists an $n \times n$ matrix B such that

$$
A B=B A=I_{n} .
$$

In this case, B is the inverse of A.
(1) NOT every matrix is invertible.
(2) A matrix that is not invertible is called singular.
(3) If A is invertible, its inverse is denoted A^{-1}.

Example: check the the following matrices are inverses of each other.
$\left(\begin{array}{ll}1 & 2 \\ 4 & 7\end{array}\right)\left(\begin{array}{cc}-7 & 2 \\ 4 & -1\end{array}\right)$

A 2×2 Matrix Inverse Formula

If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a 2×2 matrix and $(a d-b c) \neq 0$, then

$$
A^{-1}=\frac{1}{(a d-b c)}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

A 2×2 Matrix Inverse Formula

If $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a 2×2 matrix and $(a d-b c) \neq 0$, then

$$
A^{-1}=\frac{1}{(a d-b c)}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Exercise: Prove the above statement

Inverses of Arbitrary $n \times n$ Matrices

How to find the inverse of an arbitrary $n \times n$ matrix A.
(1) Form the augmented $n \times 2 n$ matrix $\left[A \mid I_{n}\right]$.
(2) Find the reduced row echelon form of $\left[A \mid I_{n}\right]$.
(3) If $\operatorname{rank}(A)<n$ then A is not invertible.
(9) If $\operatorname{rank}(A)=n$, then the RREF form of the augmented matrix is $\left[I_{n} \mid A^{-1}\right]$.

Inverses of Arbitrary $n \times n$ Matrices

How to find the inverse of an arbitrary $n \times n$ matrix A.
(1) Form the augmented $n \times 2 n$ matrix $\left[A \mid I_{n}\right]$.
(2) Find the reduced row echelon form of $\left[A \mid I_{n}\right]$.
(3) If $\operatorname{rank}(A)<n$ then A is not invertible.
(3) If $\operatorname{rank}(A)=n$, then the RREF form of the augmented matrix is $\left[I_{n} \mid A^{-1}\right]$.
Find the inverse of $\left(\begin{array}{ccc}-1 & 3 & 0 \\ 1 & -2 & 1 \\ 0 & 1 & 2\end{array}\right)$

Properties of Inverses

(1) $\left(A^{-1}\right)^{-1}=A$
(2) $(c A)^{-1}=\frac{1}{c} A^{-1}$
(3) $(A B)^{-1}=B^{-1} A^{-1}$
(9) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

Properties of Inverses

(1) $\left(A^{-1}\right)^{-1}=A$
(2) $(c A)^{-1}=\frac{1}{c} A^{-1}$
(3) $(A B)^{-1}=B^{-1} A^{-1}$
(9) $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

Exercise: Prove Property 3.

Solving a Linear System Using Inverses

Let A be invertible and $A x=B$ be a linear system, then the solution to the linear system is given by

$$
x=A^{-1} B
$$

Solving a Linear System Using Inverses

Let A be invertible and $A x=B$ be a linear system, then the solution to the linear system is given by

$$
x=A^{-1} B
$$

Example: Solve the following linear system using inverses.

$$
\begin{gathered}
x+z=-4 \\
x+y+z=0 \\
5 x-y=6
\end{gathered}
$$

