Math 240: Linear Transformations

Ryan Blair

University of Pennsylvania
Wednesday October 31, 2012

Outline

(1) Mappings and Linear Transformations

Today's Goals

(1) Be able to verify if a map is a linear transformation.
(2) Know linear transformations of \mathbb{R}^{2}.

Mappings and Linear Transformations

Definition

Let V and W be vector spaces. A mapping (or function) from V to W is a rule that assigns to each vector v in V exactly one vector $w=T(v)$ in W. We denote this mapping by $T: V \rightarrow W$.

Definition

A mapping $T: V \rightarrow W$ is a linear transformation if the following hold:
(1) $T(u+v)=T(u)+T(v)$ for all $u, v \in V$
(2) $T(c v)=c T(v)$ for all $v \in V$ and all scalars c.

We call V the domain of T and W is the codomain of T

Mappings and Linear Transformations

Definition

Let V and W be vector spaces. A mapping (or function) from V to W is a rule that assigns to each vector v in V exactly one vector $w=T(v)$ in W. We denote this mapping by $T: V \rightarrow W$.

Definition

A mapping $T: V \rightarrow W$ is a linear transformation if the following hold:
(1) $T(u+v)=T(u)+T(v)$ for all $u, v \in V$
(2) $T(c v)=c T(v)$ for all $v \in V$ and all scalars c.

We call V the domain of T and W is the codomain of T

Theorem

If A is an $m \times n$ matrix, then the mapping given by $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that $T(v)=A v$ is a linear transformation.

Matrices ARE linear transformations

Theorem

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. T is completely described by

$$
T(v)=A v
$$

where A is the $m \times n$ matrix

$$
A=\left[T\left(\mathbf{e}_{1}\right), T\left(\mathbf{e}_{2}\right), \ldots, T\left(\mathbf{e}_{n}\right)\right]
$$

and $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ are the standard basis vectors in \mathbb{R}^{n}.

Linear Transformations from \mathbb{R}^{2} to \mathbb{R}^{2}.

Reflections

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Stretching

$$
\left(\begin{array}{cc}
k & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & k
\end{array}\right)
$$

Shearing

$$
\left(\begin{array}{ll}
1 & k \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
k & 1
\end{array}\right)
$$

