Math 240: Row Space and Column

Ryan Blair

University of Pennsylvania

Wednesday October 24, 2012

Outline

(1) Vector space of functions
(2) Column Space and Row Space

Today's Goals

(1) Be able to find and verify a basis of a vector space of functions.
(2) Be able to find a basis for the row space and the column space of a matrix.

Spanning and Linear Independence for vector space of functions

Definition

A set of vectors $v_{1}, v_{2}, \ldots, v_{n}$ spans a vector space V if every vector in V can be written as $c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}$ where c_{i} is a scalar for $1 \leq i \leq n$.

Definition

Let v_{1}, \ldots, v_{m} be vectors in a vector space V. The set $S=\left\{v_{1}, \ldots, v_{m}\right\}$ is linearly independent if $c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}=0$ implies

$$
c_{1}=c_{2}=\ldots=c_{n}=0 .
$$

Theorem

Let f_{1}, \ldots, f_{k} be functions with continuous derivatives up to the $k-1$ order on the interval l. If the Wronskian of f_{1}, \ldots, f_{k} is non-zero at some point in I, then the set $\left\{f_{1}, \ldots, f_{k}\right\}$ is linearly independent on I.

Row space and Column space

Definition

Given an $m \times n$ matrix A, the row space of A is the subspace of \mathbb{R}^{n} spanned by the rows of A. The column space of A is the subspace of \mathbb{R}^{m} spanned by the columns of A

Row space and Column space

Definition

Given an $m \times n$ matrix A, the row space of A is the subspace of \mathbb{R}^{n} spanned by the rows of A. The column space of A is the subspace of \mathbb{R}^{m} spanned by the columns of A
(1) The row vectors of $\operatorname{ref}(A)$ containing leading ones give a basis for the row space of A.
(2) The column vectors of A corresponding to the columns of $\operatorname{ref}(A)$ containing leading ones give a basis for the column space of A.

Row space and Column space

Definition

Given an $m \times n$ matrix A, the row space of A is the subspace of \mathbb{R}^{n} spanned by the rows of A. The column space of A is the subspace of \mathbb{R}^{m} spanned by the columns of A
(1) The row vectors of $\operatorname{ref}(A)$ containing leading ones give a basis for the row space of A.
(2) The column vectors of A corresponding to the columns of $\operatorname{ref}(A)$ containing leading ones give a basis for the column space of A.

Thus, $\operatorname{dim}[\operatorname{rowspace}(A)]=\operatorname{dim}[\operatorname{columnspace}(A)]=\operatorname{rank}(A)$

Finding a basis for a subspace spanned by vectors in \mathbb{R}^{n}

We now have a new method of finding a basis for a subspace spanned by vectors in \mathbb{R}^{n}
(1) Make the vectors the rows of a matrix.
(2) Row reduce the matrix.
(3) The row vectors of the row reduced matrix containing leading ones give a basis for the subspace spanned by the vectors.

