Math 240: Basis of a Vector Space

Ryan Blair

University of Pennsylvania

Friday October 19, 2012

Ryan Blair (U Penn)

Math 240: Basis of a Vector Space

 → Ξ → Friday October 19, 2012

-

- ∢ /⊐) >

590

1/6

3

Ryan Blair (U Penn)

Math 240: Basis of a Vector Space

Friday October 19, 2012

イロト イヨト イヨト イヨト

୬ < ୯ 2 / 6

Ξ

Be able to find and verify a basis of a vector space.

Ryan Blair (U Penn)

Math 240: Basis of a Vector Space

Friday October 19, 2012 3 / 6

1

590

◆ロト ◆聞ト ◆国ト ◆国ト

Spanning and Linear Independence

Definition

A set of vectors $v_1, v_2, ..., v_n$ spans a vector space V if every vector in V can be written as $c_1v_1 + c_2v_2 + ... + c_nv_n$ where c_i is a scalar for $1 \le i \le n$.

Definition

Let $v_1, ..., v_m$ be vectors in a vector space V. The set $S = \{v_1, ..., v_m\}$ is **linearly independent** if $c_1v_1 + c_2v_2 + ... + c_nv_n = 0$ implies $c_1 = c_2 = ... = c_n = 0$.

Spanning and Linear Independence

Definition

A set of vectors $v_1, v_2, ..., v_n$ spans a vector space V if every vector in V can be written as $c_1v_1 + c_2v_2 + ... + c_nv_n$ where c_i is a scalar for $1 \le i \le n$.

Definition

Let $v_1, ..., v_m$ be vectors in a vector space V. The set $S = \{v_1, ..., v_m\}$ is **linearly independent** if $c_1v_1 + c_2v_2 + ... + c_nv_n = 0$ implies $c_1 = c_2 = ... = c_n = 0$.

Definition

Let $\{v_1, ..., v_m\}$ be vectors in a vector space V. $\{v_1, ..., v_m\}$ is a **basis** for V if the vectors are linearly independent and span V.

4 / 6

イロト イポト イヨト イヨト 二日

Theorems Regarding Basis

Theorem

If V has a basis of m vectors, then any set of more than m vectors is linearly dependant.

Definition

The **dimension** of a vector space V is the number of vectors in any basis for V.

Theorem

If dim(V) = n, then any set of n vectors in V that spans V is a basis of V.

イロト イポト イヨト イヨト

Basis for function spaces

Linear Independence of Functions

Theorem

Let $f_1, ..., f_k$ be functions with continuous derivatives up to the k - 1 order on the interval I. If the **Wronskian** of $f_1, ..., f_k$ is non-zero at some point in I, then the set $\{f_1, ..., f_k\}$ is linearly independent on I.

イロト イポト イヨト イヨト