Math 240: Basis of a Vector Space

Ryan Blair

University of Pennsylvania

Friday October 19, 2012

Outline

(1) Basis

(2) Basis for function spaces

Today's Goals

(1) Be able to find and verify a basis of a vector space.

Spanning and Linear Independence

Definition

A set of vectors $v_{1}, v_{2}, \ldots, v_{n}$ spans a vector space V if every vector in V can be written as $c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}$ where c_{i} is a scalar for $1 \leq i \leq n$.

Definition

Let v_{1}, \ldots, v_{m} be vectors in a vector space V. The set $S=\left\{v_{1}, \ldots, v_{m}\right\}$ is linearly independent if $c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}=0$ implies $c_{1}=c_{2}=\ldots=c_{n}=0$.

Spanning and Linear Independence

Definition

A set of vectors $v_{1}, v_{2}, \ldots, v_{n}$ spans a vector space V if every vector in V can be written as $c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}$ where c_{i} is a scalar for $1 \leq i \leq n$.

Definition

Let v_{1}, \ldots, v_{m} be vectors in a vector space V. The set $S=\left\{v_{1}, \ldots, v_{m}\right\}$ is linearly independent if $c_{1} v_{1}+c_{2} v_{2}+\ldots+c_{n} v_{n}=0$ implies $c_{1}=c_{2}=\ldots=c_{n}=0$.

Definition

Let $\left\{v_{1}, \ldots, v_{m}\right\}$ be vectors in a vector space $V .\left\{v_{1}, \ldots, v_{m}\right\}$ is a basis for V if the vectors are linearly independent and span V.

Theorems Regarding Basis

```
Theorem
If V has a basis of m}\mathrm{ vectors, then any set of more than m vectors is linearly dependant.
```


Definition

The dimension of a vector space V is the number of vectors in any basis for V.

Theorem
If $\operatorname{dim}(V)=n$, then any set of n vectors in V that spans V is a basis of V.

Linear Independence of Functions

```
Theorem
Let }\mp@subsup{f}{1}{},\ldots,\mp@subsup{f}{k}{}\mathrm{ be functions with continuous derivatives up to the k-1 order on the interval l. If the Wronskian of \(f_{1}, \ldots, f_{k}\) is non-zero at some point in \(I\), then the set \(\left\{f_{1}, \ldots, f_{k}\right\}\) is linearly independent on I.
```

