Math 240: Vector Subspace

Ryan Blair

University of Pennsylvania

Monday October 15, 2012

Outline

(1) Vector Subspaces

Today's Goals

(1) Understand the definition of vector subspace.
(2) Be able to show a set is a vector subspace.

Vector Spaces and Vector Subspaces

Recall that a Vector space is a set of vectors together with the operations of vector addition and scalar multiplication that satisfy ten conditions.

Definition

If V is a vector space and $S \subset V$, then S is a vector subspace if it is a vector space under the same operations of addition and scalar multiplication as used in V.

Verifying a Vector Subspace

Theorem
 If S is contained in a vector space V, then S is a subspace of V if and only if S is closed under the operations of addition and scalar multiplication in V.

Exercise: Show that the $S=\left\{(a, b) \in \mathbb{R}^{2}:(a, b)=(2 t, 3 t), t \in \mathbb{R}\right\}$ is a subspace of \mathbb{R}^{2}.

Verifying a Vector Subspace

Theorem

If S is contained in a vector space V, then S is a subspace of V if and only if S is closed under the operations of addition and scalar multiplication in V.

Exercise: Show that the $S=\left\{(a, b) \in \mathbb{R}^{2}:(a, b)=(2 t, 3 t), t \in \mathbb{R}\right\}$ is a subspace of \mathbb{R}^{2}.
Exercise: Show that the $S=\left\{(a, b) \in \mathbb{R}^{2}:(a, b)=(2 t, 3 t+1), t \in \mathbb{R}\right\}$ is NOT a subspace of \mathbb{R}^{2}.

Verifying a Vector Subspace

Theorem

If S is contained in a vector space V, then S is a subspace of V if and only if S is closed under the operations of addition and scalar multiplication in V.

Exercise: Show that the $S=\left\{(a, b) \in \mathbb{R}^{2}:(a, b)=(2 t, 3 t), t \in \mathbb{R}\right\}$ is a subspace of \mathbb{R}^{2}.
Exercise: Show that the $S=\left\{(a, b) \in \mathbb{R}^{2}:(a, b)=(2 t, 3 t+1), t \in \mathbb{R}\right\}$ is NOT a subspace of \mathbb{R}^{2}.
Exercise: Show that if A is an $n \times n$ matrix that the set of solutions to $A x=0$ is a subspace of \mathbb{R}^{n}. This is called the Null space of \mathbf{A}.

Verifying a Vector Subspace

Theorem

If S is contained in a vector space V, then S is a subspace of V if and only if S is closed under the operations of addition and scalar multiplication in V.

Exercise: Show that the $S=\left\{(a, b) \in \mathbb{R}^{2}:(a, b)=(2 t, 3 t), t \in \mathbb{R}\right\}$ is a subspace of \mathbb{R}^{2}.
Exercise: Show that the $S=\left\{(a, b) \in \mathbb{R}^{2}:(a, b)=(2 t, 3 t+1), t \in \mathbb{R}\right\}$ is NOT a subspace of \mathbb{R}^{2}.
Exercise: Show that if A is an $n \times n$ matrix that the set of solutions to $A x=0$ is a subspace of \mathbb{R}^{n}. This is called the Null space of \mathbf{A}.
Exercise: Show that the set of 2×2 matrices with determinant 1 is NOT a subspace of $M_{2}(\mathbb{R})$.

