Math 240: Eigenvalues

Ryan Blair

University of Pennsylvania

Tuesday February 1, 2011

Ryan Blair (U Penn)

Math 240: Eigenvalues

3 × 4 3 × Tuesday February 1, 2011 1 / 13

< 口 > < 同

590

Ryan Blair (U Penn)

Math 240: Eigenvalues

Tuesday February 1, 2011 2 / 13

(B)

< □ > < 同 >

E

Review of last time

- How to find the inverse of a Matrix.
- Properties of inverses.
- How to use inverses to solve a linear system.

프 문 문 프 문

Inverses of Arbitrary $n \times n$ Matrices

How to find the inverse of an arbitrary $n \times n$ matrix A.

- Form the augmented $n \times 2n$ matrix $[A|I_n]$.
- Find the reduced row echelon form of $[A|I_n]$.
- If rank(A) < n then A is not invertible.
- If rank(A) = n, then the RREF form of the augmented matrix is $[I_n|A^{-1}]$.

・何ト ・ヨト ・ヨト ・ヨ

Solving a Linear System Using Inverses

Let A be invertible and Ax = B be a linear system, then the solution to the linear system is given by

$$x = A^{-1}B$$

イロト イポト イヨト イヨト 二日

Solving a Linear System Using Inverses

Let A be invertible and Ax = B be a linear system, then the solution to the linear system is given by

$$x = A^{-1}B$$

Example: Solve the following linear system using inverses.

$$x + y = 4$$
$$2x - y = 14$$

イロト イポト イヨト イヨト 二日

Today's Goals

- Interpret matrices as maps from ℝⁿ to ℝ^m.
- Know how to find eigenvalues.
- Know how to find eigenvectors.

A B M A B M

Image: Image:

Functions from \mathbb{R}^n to \mathbb{R}^m

The following are examples of functions from \mathbb{R}^n into \mathbb{R} .

• $f(x_1) = 2x_1$ • $f(x_1) = x_1^2$ • $f(x_1, x_2) = x_1^2 + x_2^2$ • $f(x_1, x_2, ..., x_n) = \sum_{i=1}^n x_i^2$

Functions from \mathbb{R}^n to \mathbb{R}^m

The following are examples of functions from \mathbb{R}^n into \mathbb{R} .

• $f(x_1) = 2x_1$ • $f(x_1) = x_1^2$ • $f(x_1, x_2) = x_1^2 + x_2^2$ • $f(x_1, x_2, ..., x_n) = \sum_{i=1}^n x_i^2$

The following are examples of extending the above functions to functions from \mathbb{R}^n to \mathbb{R}^{n+1} .

•
$$g(x_1) = (x_1, 2x_1)$$

• $g(x_1) = (x_1, x_1^2)$
• $g(x_1, x_2) = (x_1, x_2, x_1^2 + x_2^2)$
• $g(x_1, x_2, ..., x_n) = (x_1, x_2, ..., x_n, \sum_{i=1}^n x_i^2)$

General maps from \mathbb{R}^n to \mathbb{R}^m

Definition

The following is a general map from \mathbb{R}^n with coordinates $x_1, x_2, ..., x_n$ to \mathbb{R}^m with coordinates $w_1, w_2, ..., w_m$. $w_1 = f_1(x_1, x_2, ..., x_n)$ $w_2 = f_2(x_1, x_2, ..., x_n)$... $w_m = f_m(x_1, x_2, ..., x_n)$

General maps from \mathbb{R}^n to \mathbb{R}^m

Definition

The following is a general map from \mathbb{R}^n with coordinates $x_1, x_2, ..., x_n$ to \mathbb{R}^m with coordinates $w_1, w_2, ..., w_m$. $w_1 = f_1(x_1, x_2, ..., x_n)$ $w_2 = f_2(x_1, x_2, ..., x_n)$... $w_m = f_m(x_1, x_2, ..., x_n)$

Example: Rewrite $g(x_1, x_2) = (x_1, x_2, x_1^2 + x_2^2)$ in this form.

イロト 不得下 イヨト イヨト 二日

Linear maps from \mathbb{R}^n to \mathbb{R}^m

Definition

The following is a general linear map from \mathbb{R}^n with coordinates $x_1, x_2, ..., x_n$ to \mathbb{R}^m with coordinates $w_1, w_2, ..., w_m$. $w_1 = a_{1,1}x_1 + a_{1,2}x_2 + ... + a_{1,n}x_n$ $w_2 = a_{2,1}x_1 + a_{2,2}x_2 + ... + a_{2,n}x_n$... $w_m = a_{m,1}x_1 + a_{m,2}x_2 + ... + a_{m,n}x_n$

Linear maps from \mathbb{R}^n to \mathbb{R}^m

Definition

The following is a general linear map from \mathbb{R}^n with coordinates $x_1, x_2, ..., x_n$ to \mathbb{R}^m with coordinates $w_1, w_2, ..., w_m$. $w_1 = a_{1,1}x_1 + a_{1,2}x_2 + ... + a_{1,n}x_n$ $w_2 = a_{2,1}x_1 + a_{2,2}x_2 + ... + a_{2,n}x_n$... $w_m = a_{m,1}x_1 + a_{m,2}x_2 + ... + a_{m,n}x_n$

Key idea: Matrix-vector multiplication always encodes a linear map from \mathbb{R}^n to \mathbb{R}^m and every linear map from \mathbb{R}^n to \mathbb{R}^m can be encoded as Matrix-vector multiplication.

Types of Linear Maps

The following are types of linear maps

- Reflection about a line in R^2
- Reflection about a plane in R^3
- Orthogonal projection onto an axis in R^2
- Orthogonal projection onto a plane in R^3
- Rotation about the origin in R^2

Eigenvalue and Eigenvector

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $Ax = \lambda x$ is called an **eigenvector**. If $Ax = \lambda x$ has a non-trivial solution, λ is an **eigenvalue**.

Eigenvalue and Eigenvector

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $Ax = \lambda x$ is called an **eigenvector**. If $Ax = \lambda x$ has a non-trivial solution, λ is an **eigenvalue**.

Only square matrices have eigenvectors.

Eigenvalue and Eigenvector

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $Ax = \lambda x$ is called an **eigenvector**. If $Ax = \lambda x$ has a non-trivial solution, λ is an **eigenvalue**.

Only square matrices have eigenvectors. Key idea:Eigenvectors are vectors sent to scalar copies of themselves under the linear map corresponding to *A*.

Image: Image:

How to find Eigenvalues

To find eigenvalues we want to solve $Ax = \lambda x$ for λ . $Ax = \lambda x$ $Ax - \lambda x = 0$ $(A - \lambda I_n)x = 0$

How to find Eigenvalues

To find eigenvalues we want to solve $Ax = \lambda x$ for λ . $Ax = \lambda x$ $Ax - \lambda x = 0$ $(A - \lambda I_n)x = 0$

For the above to have more than just a trivial solution, $(A - \lambda I_n)$ must be singular.

How to find Eigenvalues

To find eigenvalues we want to solve $Ax = \lambda x$ for λ . $Ax = \lambda x$ $Ax - \lambda x = 0$ $(A - \lambda I_n)x = 0$

For the above to have more than just a trivial solution, $(A - \lambda I_n)$ must be singular.

Hence, to find the eigenvalues, we solve the polynomial equation $det(A - \lambda I_n) = 0$ called the **characteristic** equation.

Finding Eigenvectors

For each eigenvalue λ , solve the linear system $(A - \lambda I_n)x = 0$ to find the eigenvectors.