Math 240: Eigenvalues

Ryan Blair

University of Pennsylvania

Tuesday February 1, 2011

Outline

(1) Review of Last Time

(2) Matrices as Linear Maps

(3) Eigenvalue and Eigenvector

Review of last time

(1) How to find the inverse of a Matrix.
(2) Properties of inverses.
(. How to use inverses to solve a linear system.

Inverses of Arbitrary $n \times n$ Matrices

How to find the inverse of an arbitrary $n \times n$ matrix A.
(1) Form the augmented $n \times 2 n$ matrix $\left[A \mid I_{n}\right]$.
(2) Find the reduced row echelon form of $\left[A \mid I_{n}\right]$.

- If $\operatorname{rank}(A)<n$ then A is not invertible.
(- If $\operatorname{rank}(A)=n$, then the RREF form of the augmented matrix is $\left[I_{n} \mid A^{-1}\right]$.

Solving a Linear System Using Inverses

Let A be invertible and $A x=B$ be a linear system, then the solution to the linear system is given by

$$
x=A^{-1} B
$$

Solving a Linear System Using Inverses

Let A be invertible and $A x=B$ be a linear system, then the solution to the linear system is given by

$$
x=A^{-1} B
$$

Example: Solve the following linear system using inverses.

$$
\begin{gathered}
x+y=4 \\
2 x-y=14
\end{gathered}
$$

Today's Goals

(1) Know how to interpret matrices as maps from \mathbb{R}^{n} to \mathbb{R}^{m}.
(2) Know how to find eigenvalues.
(Know how to find eigenvectors.

Functions from \mathbb{R}^{n} to \mathbb{R}^{m}

The following are examples of functions from \mathbb{R}^{n} into \mathbb{R}.
(3) $f\left(x_{1}\right)=2 x_{1}$
(2) $f\left(x_{1}\right)=x_{1}^{2}$
($f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$
(-) $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{2}$

Functions from \mathbb{R}^{n} to \mathbb{R}^{m}

The following are examples of functions from \mathbb{R}^{n} into \mathbb{R}.
(3) $f\left(x_{1}\right)=2 x_{1}$
(2) $f\left(x_{1}\right)=x_{1}^{2}$
($f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$
(-) $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{2}$
The following are examples of extending the above functions to functions from \mathbb{R}^{n} to \mathbb{R}^{n+1}.
(3) $g\left(x_{1}\right)=\left(x_{1}, 2 x_{1}\right)$
(3) $g\left(x_{1}\right)=\left(x_{1}, x_{1}^{2}\right)$
(0) $g\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}, x_{1}^{2}+x_{2}^{2}\right)$
(1) $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(x_{1}, x_{2}, \ldots, x_{n}, \sum_{i=1}^{n} x_{i}^{2}\right)$

General maps from \mathbb{R}^{n} to \mathbb{R}^{m}

Definition
 The following is a general map from \mathbb{R}^{n} with coordinates $x_{1}, x_{2}, \ldots, x_{n}$ to \mathbb{R}^{m} with coordinates $w_{1}, w_{2}, \ldots, w_{m}$. $w_{1}=f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ $w_{2}=f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
 $w_{m}=f_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

General maps from \mathbb{R}^{n} to \mathbb{R}^{m}

Definition

The following is a general map from \mathbb{R}^{n} with coordinates $x_{1}, x_{2}, \ldots, x_{n}$ to \mathbb{R}^{m} with coordinates $w_{1}, w_{2}, \ldots, w_{m}$. $w_{1}=f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ $w_{2}=f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
$w_{m}=f_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
Example: Rewrite $g\left(x_{1}, x_{2}\right)=\left(x_{1}, x_{2}, x_{1}^{2}+x_{2}^{2}\right)$ in this form.

Linear maps from \mathbb{R}^{n} to \mathbb{R}^{m}

Definition

The following is a general linear map from \mathbb{R}^{n} with coordinates $x_{1}, x_{2}, \ldots, x_{n}$ to \mathbb{R}^{m} with coordinates $w_{1}, w_{2}, \ldots, w_{m}$.
$w_{1}=a_{1,1} x_{1}+a_{1,2} x_{2}+\ldots+a_{1, n} x_{n}$ $w_{2}=a_{2,1} x_{1}+a_{2,2} x_{2}+\ldots+a_{2, n} x_{n}$
$w_{m}=a_{m, 1} x_{1}+a_{m, 2} x_{2}+\ldots+a_{m, n} x_{n}$

Linear maps from \mathbb{R}^{n} to \mathbb{R}^{m}

Definition

The following is a general linear map from \mathbb{R}^{n} with coordinates $x_{1}, x_{2}, \ldots, x_{n}$ to \mathbb{R}^{m} with coordinates $w_{1}, w_{2}, \ldots, w_{m}$.
$w_{1}=a_{1,1} x_{1}+a_{1,2} x_{2}+\ldots+a_{1, n} x_{n}$
$w_{2}=a_{2,1} x_{1}+a_{2,2} x_{2}+\ldots+a_{2, n} x_{n}$
$w_{m}=a_{m, 1} x_{1}+a_{m, 2} x_{2}+\ldots+a_{m, n} x_{n}$
Key idea: Matrix-vector multiplication always encodes a linear map from \mathbb{R}^{n} to \mathbb{R}^{m} and every linear map from \mathbb{R}^{n} to \mathbb{R}^{m} can be encoded as Matrix-vector multiplication.

Types of Linear Maps

The following are types of linear maps
(1) Reflection about a line in R^{2}
(2) Reflection about a plane in R^{3}

- Orthogonal projection onto an axis in R^{2}
(1) Orthogonal projection onto a plane in R^{3}
(0) Rotation about the origin in R^{2}

Eigenvalue and Eigenvector

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $A x=\lambda x$ is called an eigenvector. If $A x=\lambda x$ has a non-trivial solution, λ is an eigenvalue.

Eigenvalue and Eigenvector

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $A x=\lambda x$ is called an eigenvector. If $A x=\lambda x$ has a non-trivial solution, λ is an eigenvalue.

Only square matrices have eigenvectors.

Eigenvalue and Eigenvector

Definition

Let λ be a scalar, x be a $n \times 1$ column vector and A be a $n \times n$ matrix. Any nontrivial vector that solves $A x=\lambda x$ is called an eigenvector. If $A x=\lambda x$ has a non-trivial solution, λ is an eigenvalue.

Only square matrices have eigenvectors. Key idea:Eigenvectors are vectors sent to scalar copies of themselves under the linear map corresponding to A.

How to find Eigenvalues

To find eigenvalues we want to solve $A x=\lambda x$ for λ. $A x=\lambda x$
$A x-\lambda x=0$
$\left(A-\lambda I_{n}\right) x=0$

How to find Eigenvalues

To find eigenvalues we want to solve $A x=\lambda x$ for λ.
$A x=\lambda x$
$A x-\lambda x=0$
$\left(A-\lambda I_{n}\right) x=0$
For the above to have more than just a trivial solution, ($A-\lambda I_{n}$) must be singular.

How to find Eigenvalues

To find eigenvalues we want to solve $A x=\lambda x$ for λ.
$A x=\lambda x$
$A x-\lambda x=0$
$\left(A-\lambda I_{n}\right) x=0$
For the above to have more than just a trivial solution, ($A-\lambda I_{n}$) must be singular.

Hence, to find the eigenvalues, we solve the polynomial equation $\operatorname{det}\left(A-\lambda I_{n}\right)=0$ called the characteristic equation.

Finding Eigenvectors

For each eigenvalue λ, solve the linear system $\left(A-\lambda I_{n}\right) x=0$ to find the eigenvectors.

