Math 104: Series Convergence Tests II

Ryan Blair

University of Pennsylvania

Thursday April 4, 2013

Ryan Blair (U Penn)

Math 104: Series Convergence Tests II

∃ ≥ > Thursday April 4, 2013 1/6

< 口 > < 同

590

Theorem

Let $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ be positive series. If

$$lim_{i
ightarrow\infty}rac{a_i}{b_i}=C$$

where C is a finite positive constant, then either both $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ converge or both $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ diverge.

Theorem

Let $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ be positive series. If

$$lim_{i
ightarrow\infty}rac{a_i}{b_i}=C$$

where C is a finite positive constant, then either both $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ converge or both $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ diverge.

Determine if $\sum_{i=1}^{\infty} \frac{i+2}{(i+1)^3}$ is convergent or divergent.

Theorem

Let $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ be positive series. If

$$lim_{i
ightarrow\infty}rac{a_i}{b_i}=C$$

where C is a finite positive constant, then either both $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ converge or both $\sum_{i=1}^{\infty} a_i$ and $\sum_{i=1}^{\infty} b_i$ diverge.

Determine if $\sum_{i=1}^{\infty} \frac{i+2}{(i+1)^3}$ is convergent or divergent. Determine if $\sum_{i=1}^{\infty} \frac{2i^2-1}{i^23i}$ is convergent or divergent.

2 / 6

Theorem

(Alternating Series Test) If the alternating series $\sum_{i=1}^{\infty} a_i$ satisfies

•
$$b_{i+1} \leq b_i$$
 for all i

$$lim_{i\to\infty}b_i=0.$$

Then $\sum_{i=1}^{\infty} a_i$ converges.

Theorem

(Alternating Series Test) If the alternating series $\sum_{i=1}^{\infty} a_i$ satisfies

- $b_{i+1} \leq b_i$ for all i
- 2 $lim_{i\to\infty}b_i = 0.$

Then $\sum_{i=1}^{\infty} a_i$ converges.

Determine the convergence or divergence of $\sum_{i=1}^{\infty} \frac{(-1)^i}{i}$.

Theorem

(Alternating Series Test) If the alternating series $\sum_{i=1}^{\infty} a_i$ satisfies

- $b_{i+1} \leq b_i$ for all i
- 2 $\lim_{i\to\infty} b_i = 0.$

Then $\sum_{i=1}^{\infty} a_i$ converges.

Determine the convergence or divergence of $\sum_{i=1}^{\infty} \frac{(-1)^i}{i}$. Determine the convergence or divergence of $\sum_{i=1}^{\infty} (-1)^i \frac{n}{n+1}$.

Theorem

(Alternating Series Test) If the alternating series $\sum_{i=1}^{\infty} a_i$ satisfies

- $b_{i+1} \leq b_i$ for all i
- 2 $\lim_{i\to\infty} b_i = 0.$

Then $\sum_{i=1}^{\infty} a_i$ converges.

Determine the convergence or divergence of $\sum_{i=1}^{\infty} \frac{(-1)^i}{i}$. Determine the convergence or divergence of $\sum_{i=1}^{\infty} (-1)^i \frac{n}{n+1}$. Determine the convergence or divergence of $\sum_{i=1}^{\infty} cos(n\pi) \frac{1}{n^2}$.

イロト 不得 トイラト イラト ニヨー

Conditional and Absolute Convergence

Definition

A series $\sum_{i=1}^{\infty} a_i$ is **absolutely** convergent if $\sum_{i=1}^{\infty} |a_i|$ is convergent.

Definition

A series $\sum_{i=1}^{\infty} a_i$ is **conditionally** convergent if $\sum_{i=1}^{\infty} |a_i|$ is divergent and $\sum_{i=1}^{\infty} a_i$ is convergent.

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Conditional and Absolute Convergence

Definition

A series $\sum_{i=1}^{\infty} a_i$ is **absolutely** convergent if $\sum_{i=1}^{\infty} |a_i|$ is convergent.

Definition

A series $\sum_{i=1}^{\infty} a_i$ is **conditionally** convergent if $\sum_{i=1}^{\infty} |a_i|$ is divergent and $\sum_{i=1}^{\infty} a_i$ is convergent.

Determine conditional or absolute convergence of $\sum_{i=1}^{\infty} \frac{(-1)^i}{i}$.

Conditional and Absolute Convergence

Definition

A series $\sum_{i=1}^{\infty} a_i$ is **absolutely** convergent if $\sum_{i=1}^{\infty} |a_i|$ is convergent.

Definition

A series $\sum_{i=1}^{\infty} a_i$ is **conditionally** convergent if $\sum_{i=1}^{\infty} |a_i|$ is divergent and $\sum_{i=1}^{\infty} a_i$ is convergent.

Determine conditional or absolute convergence of $\sum_{i=1}^{\infty} \frac{(-1)^i}{i}$. Determine conditional or absolute convergence of $\sum_{i=1}^{\infty} \frac{\cos(i)}{i^2}$.

Ratio Test

Theorem

Given a series $\sum_{i=1}^{\infty} a_i$. If

$$\lim_{i\to\infty}|rac{a_{i+1}}{a_i}|=L,$$

then

- If L < 1, the series converges absolutely.
- **2** If L = 1, the test is inconclusive.
- 3 If L > 1, the series diverges.

(3) (3)

Image: Image:

Ratio Test

Theorem

Given a series $\sum_{i=1}^{\infty} a_i$. If

$$\lim_{i\to\infty}|rac{a_{i+1}}{a_i}|=L,$$

then

• If
$$L < 1$$
, the series converges absolutely.

- **2** If L = 1, the test is inconclusive.
- If L > 1, the series diverges.

Does not help for the mundane: $\sum_{i=1}^{\infty} \frac{1}{i^2}$

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Ratio Test

Theorem

Given a series $\sum_{i=1}^{\infty} a_i$. If

$$\lim_{i\to\infty}|rac{a_{i+1}}{a_i}|=L,$$

then

• If
$$L < 1$$
, the series converges absolutely.

- **2** If L = 1, the test is inconclusive.
- If L > 1, the series diverges.

Does not help for the mundane: $\sum_{i=1}^{\infty} \frac{1}{i^2}$ Helps with the crazy stuff: $\sum_{i=1}^{\infty} \frac{i^i}{i!}$

▲ロト ▲掃 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Root Test

Theorem

Given a series $\sum_{i=1}^{\infty} a_i$. If

$$lim_{i
ightarrow\infty}|a_i|^{rac{1}{i}}=L,$$

then

• If L < 1, the series converges absolutely. 2 If L = 1, the test is inconclusive. \bullet If L > 1, the series diverges.

Image: Image:

Root Test

Theorem

Given a series $\sum_{i=1}^{\infty} a_i$. If

$$\lim_{i o\infty}|a_i|^{rac{1}{i}}=L,$$

then

If L < 1, the series converges absolutely.
If L = 1, the test is inconclusive.
If L > 1, the series diverges.

Helps with series involving variable powers: $\sum_{i=1}^{\infty} (\frac{i}{3i+4})^i$

3

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Root Test

Theorem

Given a series $\sum_{i=1}^{\infty} a_i$. If

$$\lim_{i o\infty}|a_i|^{rac{1}{i}}=L,$$

then

- If L < 1, the series converges absolutely.
 If L = 1, the test is inconclusive.
- If L > 1, the series diverges.

Helps with series involving variable powers: $\sum_{i=1}^{\infty} \left(\frac{i}{3i+4}\right)^i$ Helps with series involving variable powers: $\sum_{i=1}^{\infty} i\left(\frac{2}{3}\right)^i$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト