Math 104: Practice Midterm 3

Ryan Blair

University of Pennsylvania
Tuesday April 23, 2013

Final Exam

(1) Wednesday May 1st from noon until 2pm.
(2) Bring Penn ID and an 8.5×11 hand written page of notes.
(3) 15 multiple choice problems (8 on integration and applications, 5 on series and sequences, 2 on differential equations).

Studying for the final

(1) My Office hours Thursday 3 pm to 4 pm , Tuesday 5 pm to 7 pm
(2) Other professors review sessions are open to you.
(3) Use the finals from spring 2011, fall 2011, spring 2012 and fall 2012 as your practice finals

Problem 1

Show that the following sequence converges to zero.

$$
\left\{\frac{\cos ^{2}(n)}{2^{n}}\right\}
$$

Problem 1

Show that the following sequence converges to zero.

$$
\left\{\frac{\cos ^{2}(n)}{2^{n}}\right\}
$$

Theorem
(Squeeze) Given sequences a_{n}, b_{n} and c_{n} such that $a_{n} \leq b_{n} \leq c_{n}$ for all n and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then

$$
\lim _{n \rightarrow \infty} b_{n}=L
$$

Problem 2

Determine if the following series converges. If it does, find the value of the sum.

$$
\sum_{n=1}^{\infty} \frac{3}{n(n+3)}
$$

Problem 2

Determine if the following series converges. If it does, find the value of the sum.

$$
\sum_{n=1}^{\infty} \frac{3}{n(n+3)}
$$

Definition

The \boldsymbol{n}-th partial sum for a sequence $\left\{a_{i}\right\}_{i=1}^{\infty}$ is

$$
S_{n}=\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\ldots+a_{n}
$$

Definition

A Series

$$
\sum_{i=1}^{\infty} a_{i}=\lim _{n \rightarrow \infty} S_{n}
$$

Problem 3

For what values of p is the following series convergent?

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{p}}
$$

Problem 3

For what values of p is the following series convergent?

$$
\sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{p}}
$$

Theorem

Let f be a continuous, positive, decreasing function on $[c, \infty]$. If $a_{i}=f(i)$, then
(1) If $\int_{c}^{\infty} f(x) d x$ is convergent, then $\sum_{i=c}^{\infty} a_{i}$ is convergent.
(2) If $\int_{c}^{\infty} f(x) d x$ is divergent, then $\sum_{i=c}^{\infty} a_{i}$ is divergent.

Problem 4

Determine if the following series converges or diverges.

$$
\sum_{n=1}^{\infty} \sin \left(\frac{1}{n}\right)
$$

Problem 4

Determine if the following series converges or diverges.

$$
\sum_{n=1}^{\infty} \sin \left(\frac{1}{n}\right)
$$

Theorem

Let $\sum_{i=1}^{\infty} a_{i}$ and $\sum_{i=1}^{\infty} b_{i}$ be positive series. If

$$
\lim _{i \rightarrow \infty} \frac{a_{i}}{b_{i}}=C
$$

where C is a finite positive constant, then either both $\sum_{i=1}^{\infty} a_{i}$ and $\sum_{i=1}^{\infty} b_{i}$ converge or both $\sum_{i=1}^{\infty} a_{i}$ and $\sum_{i=1}^{\infty} b_{i}$ diverge.

Problem 5

Show that the following series is conditionally convergent.

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}
$$

Problem 5

Show that the following series is conditionally convergent.

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{\ln (n)}
$$

Theorem

(Alternating Series Test)
If the alternating series $\sum_{i=1}^{\infty} a_{i}$ satisfies
(1) $b_{i+1} \leq b_{i}$ for all i
(2) $\lim _{i \rightarrow \infty} b_{i}=0$.

Then $\sum_{i=1}^{\infty} a_{i}$ converges.

Problem 6

For what values of k is the following series divergent?

$$
\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(k n)!}
$$

Problem 6

For what values of k is the following series divergent?

$$
\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(k n)!}
$$

Theorem

Given a series $\sum_{i=1}^{\infty} a_{i}$. If

$$
\lim _{i \rightarrow \infty}\left|\frac{a_{i+1}}{a_{i}}\right|=L
$$

then
(1) If $L<1$, the series converges absolutely.
(2) If $L=1$, the test is inconclusive.
(3) If $L>1$, the series diverges.

Problem 7

Find the interval of convergence for the following power series.

$$
\sum_{n=1}^{\infty} \frac{n(2 x)^{n}}{\left(n^{2}+1\right) 3^{n}}
$$

Problem 7

Find the interval of convergence for the following power series.

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{n(2 x)^{n}}{\left(n^{2}+1\right) 3^{n}} \\
R=\lim _{k \rightarrow \infty}\left|\frac{c_{k}}{c_{k+1}}\right|
\end{gathered}
$$

Given a power series $\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$ with radius of convergence R, the interval of convergence is one of the following where we include endpoints it the series convergence at those points.

$$
(a-R, a+R),[a-R, a+R),(a-R, a+R],[a-R, a+R]
$$

Problem 8

Bound the error in approximating e^{x} on the interval $[-4,-2]$ using the first six terms in its Maclaurin series.

Problem 8

Bound the error in approximating e^{x} on the interval $[-4,-2]$ using the first six terms in its Maclaurin series.

Theorem (Taylor's Theorem)

Given a Taylor Series $\sum_{k=0}^{\infty} \frac{f(k)(a)}{k!}(x-a)^{k}$, if there is a constant M such that $\left|f^{(n+1)}(t)\right|<M$ for all t between a and x, then
$\left|R_{n}(x)\right|<M \frac{|x-a|^{n+1}}{(n+1)!}$

