Math 104: Series and Approximations II

Ryan Blair

University of Pennsylvania

Thursday April 18, 2013

Ryan Blair (U Penn)

Math 104: Series and Approximations II

Thursday April 18, 2013

표 문 표

< 口 > < 同

590

1 / 5

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x)$$

Where $R_n(x)$ is the error term of order **n**.

Theorem (Taylor's Theorem)

Given a Taylor Series $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$, if there is a constant M such that $|f^{(n+1)}(t)| < M$ for all t between a and x, then $|R_n(x)| < M \frac{|x-a|^{n+1}}{(n+1)!}$

< □ ▶ < □ ▶ < □ ▶ < □ ▶ = □ ● _ ○ < ○

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x)$$

Where $R_n(x)$ is the error term of order n.

Theorem (Taylor's Theorem)

Given a Taylor Series $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$, if there is a constant M such that $|f^{(n+1)}(t)| < M$ for all t between a and x, then $|R_n(x)| < M \frac{|x-a|^{n+1}}{(n+1)!}$

Uses: Can show Taylor series converges if $|R_n(x)|$ goes to zero as n goes to infinity. Can get estimates for functions.

2 / 5

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x)$$

Where $R_n(x)$ is the error term of order **n**.

Theorem (Taylor's Theorem)

Given a Taylor Series $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$, if there is a constant M such that $|f^{(n+1)}(t)| < M$ for all t between a and x, then $|R_n(x)| < M \frac{|x-a|^{n+1}}{(n+1)!}$

Uses: Can show Taylor series converges if $|R_n(x)|$ goes to zero as n goes to infinity, Can get estimates for functions. Estimate the error for approximating cos(x) on $[-2\pi, 2\pi]$ using the first four terms of its Maclaurin Series.

Ryan Blair (U Penn)

Math 104: Series and Approximations II

Thursday April 18, 2013

2 / 5

Given a series $\sum_{i=0}^{\infty} a_i$ with a sequence of partial sums $\{S_n\}_{n=1}^{\infty}$, we know that the **Error** in estimating the series by the n-th partial sum is

$$R_n=(\Sigma_{i=0}^\infty a_i)-S_n=\Sigma_{i=n+1}^\infty a_i$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given a series $\sum_{i=0}^{\infty} a_i$ with a sequence of partial sums $\{S_n\}_{n=1}^{\infty}$, we know that the **Error** in estimating the series by the n-th partial sum is

$$R_n=(\Sigma_{i=0}^\infty a_i)-S_n=\Sigma_{i=n+1}^\infty a_i$$

We can use integrals to estimate R_n .

Theorem

If $\sum_{i=0}^{\infty} a_i$ converges and f(x) is a positive, decreasing, continuous function such that $f(i) = a_i$ for all i, then

$$\int_{n+1}^{\infty} f(x) \le R_n \le \int_n^{\infty} f(x)$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

- Approximate $\sum_{i=0}^{\infty} \frac{1}{i^3}$ using the first 10 terms of the series.
- **2** Estimate R_{10} .
- Solution Use 1 and 2 to better estimate $\sum_{i=0}^{\infty} \frac{1}{i^3}$.
- How many terms are required to ensure that the sum is accurate with in .0005?

Estimating Alternating Series

Given an alternating series $\sum_{i=0}^{\infty} (-1)^i b_i$, estimating the error is much easier

Theorem

Given an alternating series $\sum_{i=0}^{\infty} (-1)^i b_i$ such that

•
$$b_{i+1} \leq b_i$$
 for all *i*.

2
$$lim_{i\to\infty}b_i=0$$

Then

$$|R_n| \leq b_{n+1}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Estimating Alternating Series

Given an alternating series $\sum_{i=0}^{\infty} (-1)^i b_i$, estimating the error is much easier

Theorem

Given an alternating series $\sum_{i=0}^{\infty} (-1)^i b_i$ such that

•
$$b_{i+1} \leq b_i$$
 for all *i*.

$$im_{i\to\infty}b_i=0$$

Then

$$|R_n| \leq b_{n+1}$$

Example: How many terms of the series $\sum_{i=0}^{\infty} \frac{(-1)^i}{i^3}$ are required to ensure that the sum is accurate with in .0005?

▲日▼ ▲母▼ ▲日▼ ▲日▼ ■ ろの⊙