Math 104: Series and Approximations II

Ryan Blair

University of Pennsylvania

Thursday April 18, 2013

Taylor's Formula

$f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(x)$
Where $R_{n}(x)$ is the error term of order \mathbf{n}.

Theorem (Taylor's Theorem)

Given a Taylor Series $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$, if there is a constant M such that $\left|f^{(n+1)}(t)\right|<M$ for all t between a and x, then $\left|R_{n}(x)\right|<M \frac{|x-a|^{n+1}}{(n+1)!}$

Taylor's Formula

$f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(x)$
Where $R_{n}(x)$ is the error term of order \mathbf{n}.

Theorem (Taylor's Theorem)

Given a Taylor Series $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$, if there is a constant M such that $\left|f^{(n+1)}(t)\right|<M$ for all t between a and x, then $\left|R_{n}(x)\right|<M \frac{|x-a|^{n+1}}{(n+1)!}$

Uses: Can show Taylor series converges if $\left|R_{n}(x)\right|$ goes to zero as n goes to infinity, Can get estimates for functions.

Taylor's Formula

$f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(x)$
Where $R_{n}(x)$ is the error term of order \mathbf{n}.

Theorem (Taylor's Theorem)

Given a Taylor Series $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$, if there is a constant M such that $\left|f^{(n+1)}(t)\right|<M$ for all t between a and x, then $\left|R_{n}(x)\right|<M \frac{|x-a|^{n+1}}{(n+1)!}$

Uses: Can show Taylor series converges if $\left|R_{n}(x)\right|$ goes to zero as n goes to infinity, Can get estimates for functions.
Estimate the error for approximating $\cos (x)$ on $[-2 \pi, 2 \pi]$ using the first four terms of its Maclaurin Series.

Estimating a Series

Given a series $\sum_{i=0}^{\infty} a_{i}$ with a sequence of partial sums $\left\{S_{n}\right\}_{n=1}^{\infty}$, we know that the Error in estimating the series by the n-th partial sum is

$$
R_{n}=\left(\sum_{i=0}^{\infty} a_{i}\right)-S_{n}=\sum_{i=n+1}^{\infty} a_{i}
$$

Estimating a Series

Given a series $\sum_{i=0}^{\infty} a_{i}$ with a sequence of partial sums $\left\{S_{n}\right\}_{n=1}^{\infty}$, we know that the Error in estimating the series by the n-th partial sum is

$$
R_{n}=\left(\sum_{i=0}^{\infty} a_{i}\right)-S_{n}=\sum_{i=n+1}^{\infty} a_{i}
$$

We can use integrals to estimate R_{n}.

Theorem

If $\sum_{i=0}^{\infty} a_{i}$ converges and $f(x)$ is a positive, decreasing, continuous function such that $f(i)=a_{i}$ for all i, then

$$
\int_{n+1}^{\infty} f(x) \leq R_{n} \leq \int_{n}^{\infty} f(x)
$$

Example

(1) Approximate $\sum_{i=0}^{\infty} \frac{1}{i^{3}}$ using the first 10 terms of the series.
(2) Estimate R_{10}.
(3) Use 1 and 2 to better estimate $\sum_{i=0}^{\infty} \frac{1}{i^{3}}$.
(9) How many terms are required to ensure that the sum is accurate with in .0005 ?

Estimating Alternating Series

Given an alternating series $\sum_{i=0}^{\infty}(-1)^{i} b_{i}$, estimating the error is much easier

Theorem

Given an alternating series $\sum_{i=0}^{\infty}(-1)^{i} b_{i}$ such that
(1) $b_{i+1} \leq b_{i}$ for all i.
(2) $\lim _{i \rightarrow \infty} b_{i}=0$

Then

$$
\left|R_{n}\right| \leq b_{n+1}
$$

Estimating Alternating Series

Given an alternating series $\sum_{i=0}^{\infty}(-1)^{i} b_{i}$, estimating the error is much easier

Theorem

Given an alternating series $\sum_{i=0}^{\infty}(-1)^{i} b_{i}$ such that
(1) $b_{i+1} \leq b_{i}$ for all i.
(2) $\lim _{i \rightarrow \infty} b_{i}=0$

Then

$$
\left|R_{n}\right| \leq b_{n+1}
$$

Example: How many terms of the series $\sum_{i=0}^{\infty} \frac{(-1)^{i}}{i^{3}}$ are required to ensure that the sum is accurate with in .0005 ?

