Math 104: Power Series and Approximations

Ryan Blair

University of Pennsylvania

Tuesday April 16, 2013

Ryan Blair (U Penn)

Math 104: Power Series and Approximations

 $\exists \rightarrow$ Tuesday April 16, 2013 1/4

3

Power Series

Definition

A Power Series is a series and a function of the form

$$P(x) = \sum_{k=0}^{\infty} c_k (x-a)^k = c_1 + c_2 (x-a) + c_3 (x-a)^2 + ...$$

where x is a variable, the c_i are constants and we say P(x) is centered at a.

Let R be the radius of convergence of P(x).

$$R = \lim_{k \to \infty} \left| \frac{c_k}{c_{k+1}} \right|$$

Ryan Blair (U Penn)

3

- 4 間 ト 4 ヨ ト 4 ヨ ト

Power Series

Definition

A Power Series is a series and a function of the form

$$P(x) = \sum_{k=0}^{\infty} c_k (x-a)^k = c_1 + c_2 (x-a) + c_3 (x-a)^2 + ...$$

where x is a variable, the c_i are constants and we say P(x) is centered at a.

Let R be the radius of convergence of P(x).

$$R = lim_{k \to \infty} |\frac{c_k}{c_{k+1}}|$$

If the radius of convergence of a Taylor series is R, find the radius of convergence of an antiderivative and the derivative.

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x)$$

Where $R_n(x)$ is the error term of order **n**.

Theorem (Taylor's Theorem)

Given a Taylor Series $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$, if there is a constant M such that $|f^{(n+1)}(t)| < M$ for all t between a and x, then $|R_n(x)| < M \frac{|x-a|^{n+1}}{(n+1)!}$

ロト (同) (三) (三) のへで

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x)$$

Where $R_n(x)$ is the error term of order **n**.

Theorem (Taylor's Theorem)

Given a Taylor Series $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$, if there is a constant M such that $|f^{(n+1)}(t)| < M$ for all t between a and x, then $|R_n(x)| < M \frac{|x-a|^{n+1}}{(n+1)!}$ Moreover, If on some closed interval f is n times differentiable and this inequality holds for all n, then the series converges to f(x) on that interval.

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x)$$

Where $R_n(x)$ is the error term of order **n**.

Theorem (Taylor's Theorem)

Given a Taylor Series $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$, if there is a constant M such that $|f^{(n+1)}(t)| < M$ for all t between a and x, then $|R_n(x)| < M \frac{|x-a|^{n+1}}{(n+1)!}$ Moreover, If on some closed interval f is n times differentiable and this inequality holds for all n, then the series converges to f(x) on that interval.

Uses: Can show Taylor series converges if $|R_n(x)|$ goes to zero as n goes to infinity, Can get estimates for functions.

Ryan Blair (U Penn)

Math 104: Power Series and Approximations

Tuesday April 16, 2013 3 / 4

- Show that the Maclaurin series for cos(x) converges to cos(x) for all x using Taylor's Theorem.
- Show that the Maclaurin series for $\frac{1}{1-x}$ converges to $\frac{1}{1-x}$ for all $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$ using Taylor's Theorem.
- Estimate the error for approximating e^x on [-2, 2] using the first four terms of its Maclaurin Series.
- Solution Estimate the error for approximating cos(x) on $[-2\pi, 2\pi]$ using the first four terms of its Maclaurin Series.

・ロ > (□ > (□ > (□ >) (□ >