Math 104: Power Series and Approximations

Ryan Blair

University of Pennsylvania

Tuesday April 16, 2013

Power Series

Definition

A Power Series is a series and a function of the form

$$
P(x)=\sum_{k=0}^{\infty} c_{k}(x-a)^{k}=c_{1}+c_{2}(x-a)+c_{3}(x-a)^{2}+\ldots
$$

where x is a variable, the c_{i} are constants and we say $P(x)$ is centered at a.

Let R be the radius of convergence of $P(x)$.

$$
R=\lim _{k \rightarrow \infty}\left|\frac{c_{k}}{c_{k+1}}\right|
$$

Power Series

Definition

A Power Series is a series and a function of the form

$$
P(x)=\sum_{k=0}^{\infty} c_{k}(x-a)^{k}=c_{1}+c_{2}(x-a)+c_{3}(x-a)^{2}+\ldots
$$

where x is a variable, the c_{i} are constants and we say $P(x)$ is centered at a.

Let R be the radius of convergence of $P(x)$.

$$
R=\lim _{k \rightarrow \infty}\left|\frac{c_{k}}{c_{k+1}}\right|
$$

If the radius of convergence of a Taylor series is R, find the radius of convergence of an antiderivative and the derivative.

Taylor's Formula

$f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(x)$
Where $R_{n}(x)$ is the error term of order \mathbf{n}.

Theorem (Taylor's Theorem)

Given a Taylor Series $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$, if there is a constant M such that $\left|f^{(n+1)}(t)\right|<M$ for all t between a and x, then
$\left|R_{n}(x)\right|<M \frac{|x-a|^{n+1}}{(n+1)!}$

Taylor's Formula

$f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(x)$
Where $R_{n}(x)$ is the error term of order \mathbf{n}.

Theorem (Taylor's Theorem)

Given a Taylor Series $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$, if there is a constant M such that $\left|f^{(n+1)}(t)\right|<M$ for all t between a and x, then
$\left|R_{n}(x)\right|<M \frac{|x-a|^{n+1}}{(n+1)!}$
Moreover, If on some closed interval f is n times differentiable and this inequality holds for all n, then the series converges to $f(x)$ on that interval.

Taylor's Formula

$f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(x)$
Where $R_{n}(x)$ is the error term of order \mathbf{n}.

Theorem (Taylor's Theorem)

Given a Taylor Series $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$, if there is a constant M such that $\left|f^{(n+1)}(t)\right|<M$ for all t between a and x, then
$\left|R_{n}(x)\right|<M \frac{|x-a|^{n+1}}{(n+1)!}$
Moreover, If on some closed interval f is n times differentiable and this inequality holds for all n, then the series converges to $f(x)$ on that interval.

Uses: Can show Taylor series converges if $\left|R_{n}(x)\right|$ goes to zero as n goes to infinity, Can get estimates for functions.

Examples

(1) Show that the Maclaurin series for $\cos (x)$ converges to $\cos (x)$ for all \times using Taylor's Theorem.
(2) Show that the Maclaurin series for $\frac{1}{1-x}$ converges to $\frac{1}{1-x}$ for all $x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$ using Taylor's Theorem.
(3) Estimate the error for approximating e^{x} on $[-2,2]$ using the first four terms of its Maclaurin Series.
(9) Estimate the error for approximating $\cos (x)$ on $[-2 \pi, 2 \pi]$ using the first four terms of its Maclaurin Series.

