Math 104: Sequences and Series

Ryan Blair

University of Pennsylvania

Thursday March 28, 2013

Ryan Blair (U Penn)

Math 104: Sequences and Series

→ Ξ → Thursday March 28, 2013 1/6

3

< 口 > < 同

590

Definition

- A sequence is **increasing** if $a_n \leq a_{n+1}$ for all *n*.
- A sequence is **decreasing** if $a_n \ge a_{n+1}$ for all *n*.
- If a sequence is decreasing or increasing we say it is monotonic.

Definition

A sequence is **bounded above** if there exists a constant M such that $a_n \leq M$ for all n.

A sequence is **bounded below** if there exists a constant *m* such that $a_n > m$ for all *n*.

A sequence is **bounded** if it is both bounded above and bounded below.

(日) (同) (日) (日) (日)

Every bounded monotonic sequence converges

Ryan Blair (U Penn)

Math 104: Sequences and Series

 → Ξ → Thursday March 28, 2013 3 / 6

3

∃ ⊳

< 口 > < 同

$$\lim_{n \to \infty} \frac{\ln(n)}{n} = 0$$

$$\lim_{n \to \infty} n^{\frac{1}{n}} = 1$$

$$\lim_{n \to \infty} x^{\frac{1}{n}} = 1 \text{ if } x > 0$$

$$\lim_{n \to \infty} x^n = 0 \text{ if } |x| < 1$$

$$\lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x$$

$$\lim_{n \to \infty} \frac{x^n}{n!} = 0$$

999

▲白▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣

Series in terms of Sequences

Roughly, an infinite series $\sum_{i=1}^{\infty} a_i$ denotes the sum of the terms in the sequence $\{a_i\}_{i=1}^{\infty}$.

Definition

The **n-th partial sum** for a sequence $\{a_i\}_{i=1}^{\infty}$ is

$$S_n = \sum_{i=1}^n a_i = a_1 + a_2 + a_3 + \dots + a_n$$

Definition

A Series

$$\sum_{i=1}^{\infty} a_i = lim_{n \to \infty} S_n$$

Ryan Blair (U Penn)

イロト イポト イヨト イヨト 二日

Series in terms of Sequences

Roughly, an infinite series $\sum_{i=1}^{\infty} a_i$ denotes the sum of the terms in the sequence $\{a_i\}_{i=1}^{\infty}$.

Definition

The **n-th partial sum** for a sequence $\{a_i\}_{i=1}^{\infty}$ is

$$S_n = \sum_{i=1}^n a_i = a_1 + a_2 + a_3 + \dots + a_n$$

Definition

A Series

$$\sum_{i=1}^{\infty} a_i = \lim_{n \to \infty} S_n$$

Exercise: Given a constant *r* find $\sum_{i=0}^{\infty} r^i$ when it exists.

Series in terms of Sequences

Roughly, an infinite series $\sum_{i=1}^{\infty} a_i$ denotes the sum of the terms in the sequence $\{a_i\}_{i=1}^{\infty}$.

Definition

The **n-th partial sum** for a sequence $\{a_i\}_{i=1}^{\infty}$ is

$$S_n = \sum_{i=1}^n a_i = a_1 + a_2 + a_3 + \dots + a_n$$

Definition

A Series

$$\sum_{i=1}^{\infty} a_i = lim_{n \to \infty} S_n$$

Exercise: Given a constant r find $\sum_{i=0}^{\infty} r^i$ when it exists. **Exercise:** Use partial sums to find $\sum_{i=1}^{\infty} \frac{1}{i^2+i}$.

Ryan Blair (U Penn)

3

Sac

If a series $\sum_{i=1}^{\infty} a_i$ converges then $\lim_{n\to\infty} a_i = 0$.

Theorem

If $\lim_{n\to\infty} a_i \neq 0$ or does not exist, then $\sum_{i=1}^{\infty} a_i$ does not converge.

If a series $\sum_{i=1}^{\infty} a_i$ converges then $\lim_{n\to\infty} a_i = 0$.

Theorem

If $\lim_{n\to\infty} a_i \neq 0$ or does not exist, then $\sum_{i=1}^{\infty} a_i$ does not converge.

Exercise: Determine the convergence or divergence of $\sum_{i=1}^{\infty} ln(\frac{i^2+1}{2i^2+1})$

If a series $\sum_{i=1}^{\infty} a_i$ converges then $\lim_{n\to\infty} a_i = 0$.

Theorem

If $\lim_{n\to\infty} a_i \neq 0$ or does not exist, then $\sum_{i=1}^{\infty} a_i$ does not converge.

Exercise: Determine the convergence or divergence of $\sum_{i=1}^{\infty} ln(\frac{i^2+1}{2i^2+1})$ **Exercise:** Determine the convergence or divergence of $\sum_{i=1}^{\infty} \frac{e^i}{i^2}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <