Math 104: Sequences

Ryan Blair

University of Pennsylvania
Thursday March 26, 2013

Motivating Example

We need to be careful with infinite lists of numbers

$$
\ln (2)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6} \cdots
$$

So, what is the following rearrangement equal to?

$$
1+\frac{1}{3}-\frac{1}{2}+\frac{1}{5}+\frac{1}{7}-\frac{1}{4}+\frac{1}{9}+\frac{1}{11}-\frac{1}{6} \cdots
$$

Sequences

Definition

A sequence is an ordered set of real numbers, equivalently, a sequence is an function from the positive integers to the real numbers.

We denote the terms of a sequence by $a_{1}, a_{2}, a_{3}, a_{4}, \ldots$ and the general term or the \mathbf{n}-th term of a sequence is labeled a_{n}.

Presentation of Sequences

A sequence may be given as a formula

$$
a_{n}=\frac{n}{n+1}
$$

or as a recursive definition

$$
a_{1}=1, a_{2}=1, a_{n}=a_{n-1}+a_{n-2}
$$

Limits of Sequences

Thinking of a sequence as a function $f: \mathbb{Z}^{+} \rightarrow \mathbb{R}$ we can take a limit $\lim _{n \rightarrow \infty} a_{n}=L$

Theorem

If $f: \mathbb{R} \rightarrow \mathbb{R}, f(n)=a_{n}$ for all $n \in \mathbb{Z}^{+}$and $\lim _{x \rightarrow \infty} f(x)=L$, then $\lim _{n \rightarrow \infty} a_{n}=L$

Operations with Limits

If $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$, then
$a_{n} \pm b_{n} \rightarrow a \pm b$
$c a_{n} \rightarrow c a$
$a_{n} \times b_{n} \rightarrow a \times b$
$\frac{a n}{b_{n}} \rightarrow \frac{a}{b}$

Theorem

(Squeeze) Given sequences a_{n}, b_{n} and c_{n} such that $a_{n} \leq b_{n} \leq c_{n}$ for all n and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then

$$
\lim _{n \rightarrow \infty} b_{n}=L
$$

Convergence and Divergence

Examples of sequences that diverge

$$
\begin{gathered}
a_{n}=(-1)^{n} \\
a_{n}=2^{n}
\end{gathered}
$$

Exercise: If $r \in \mathbb{R}$, when does $a_{n}=r^{n}$ converge and diverge? (this is called a geometric sequence)

Alternating Sequences

An alternating sequence is of the form $a_{n}=(-1)^{n} b_{n}$ where $b_{n} \geq 0$ for all n.

Theorem

Given an alternating sequence a_{n}, if $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ then $\lim _{n \rightarrow \infty} a_{n}=0$.

Exercise: Prove the above theorem using our limit rules and the squeeze theorem.

Monotonic Sequences

Definition

A sequence is increasing if $a_{n} \leq a_{n+1}$ for all n.
A sequence is decreasing if $a_{n} \geq a_{n+1}$ for all n.
If a sequence is decreasing or increasing we say it is monotonic.

Definition

A sequence is bounded above if there exists a constant M such that $a_{n} \leq M$ for all n.
A sequence is bounded below if there exists a constant m such that $a_{n} \geq m$ for all n.
A sequence is bounded if it is both bounded above and bounded below.

Monotonic Sequences

Theorem
Every bounded monotonic sequence converges

