Math 104: Improper Integrals

Ryan Blair

University of Pennsylvania

Tuesday March 12, 2013

Outline

(1) Improper Integrals

Improper integrals

Definite integrals $\int_{a}^{b} f(x) d x$ were required to have

- finite domain of integration $[a, b]$
- finite integrand $f(x)< \pm \infty$

Improper integrals

Definite integrals $\int_{a}^{b} f(x) d x$ were required to have

- finite domain of integration $[a, b]$
- finite integrand $f(x)< \pm \infty$

Improper integrals

(1) Infinite limits of integration
(2) Integrals with vertical asymptotes i.e. with infinite discontinuity

Infinite limits of integration

Definition

Improper integrals are said to be

- convergent if the limit is finite and that limit is the value of the improper integral.
- divergent if the limit does not exist.

Infinite limits of integration

Definition

Improper integrals are said to be

- convergent if the limit is finite and that limit is the value of the improper integral.
- divergent if the limit does not exist.

If as a limit the improper integral is finite we say the integral converges, while if the limit is infinite or does not exist, we say the integral diverges.

Convergence is good (means we can do the integral); divergence is bad (means we can't do the integral).

Example 1

Find

$$
\int_{0}^{\infty} e^{-x} d x
$$

(if it even converges)

Example 2

Find

$$
\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x
$$

(if it even converges)

Example 3, the p-test

The integral

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x
$$

(3) Converges if $p>1$;
(2) Diverges if $p \leq 1$.

Convergence vs. Divergence

In each case, if the limit exists (or if both limits exist, in Example 2!), we say the improper integral converges.

If the limit fails to exist or is infinite, the integral diverges. In Example 2, if either limit fails to exist or is infinite, the integral diverges.

Example 4

Find

$$
\int_{0}^{2} \frac{2 x}{x^{2}-4} d x
$$

(if it converges)

Example 5

$$
\text { Find } \int_{0}^{3} \frac{1}{(x-1)^{2 / 3}} d x, \quad \text { if it converges. }
$$

Solution:

Example 5

$$
\text { Find } \int_{0}^{3} \frac{1}{(x-1)^{2 / 3}} d x, \quad \text { if it converges. }
$$

Solution: We might think just to do

$$
\int_{0}^{3} \frac{1}{(x-1)^{2 / 3}} d x=\left[3(x-1)^{1 / 3}\right]_{0}^{3},
$$

Example 5

$$
\text { Find } \int_{0}^{3} \frac{1}{(x-1)^{2 / 3}} d x \text {, if it converges. }
$$

Solution: We might think just to do

$$
\int_{0}^{3} \frac{1}{(x-1)^{2 / 3}} d x=\left[3(x-1)^{1 / 3}\right]_{0}^{3},
$$

but this is not okay!

Tests for convergence and divergence

The gist:
(1) If you're smaller than something that converges, then you converge.
(2) If you're bigger than something that diverges, then you diverge.

Theorem

Let f and g be continuous on $[a, \infty)$ with $0 \leq f(x) \leq g(x)$ for all $x \geq a$. Then
(1) $\int_{a}^{\infty} f(x) d x$ converges if $\int_{a}^{\infty} g(x) d x$ converges.
(2) $\int_{a}^{\infty} g(x) d x$ diverges if $\int_{a}^{\infty} f(x) d x$ diverges.

Example 6

Which of the following integrals converge?

$$
\text { (a) } \int_{1}^{\infty} e^{-x^{2}} d x, \quad \text { (b) } \int_{1}^{\infty} \frac{\sin ^{2}(x)}{x^{2}} d x
$$

Limit Comparison Test

Theorem

If positive functions f and g are continuous on $[a, \infty)$ and

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=L, \quad 0<L<\infty,
$$

then

$$
\int_{a}^{\infty} f(x) d x \text { and } \int_{a}^{\infty} g(x) d x
$$

BOTH converge or BOTH diverge.
Example 7: Let $f(x)=\frac{1}{\sqrt{x}+1}$; consider

$$
\int_{1}^{\infty} \frac{1}{\sqrt{x}+1} d x
$$

Does the integral converge or diverge?

