Math 104: Centroids and Centers of Mass

Ryan Blair

University of Pennsylvania
Thursday February 28, 2013

Outline

(1) Applications of Definite Integrals

(2) Center of Mass and Centroid

Averages

Definition

The average of $x_{1}, x_{2}, \ldots, x_{n}$ is given by

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

Definition

The average of a function $f(x)$ on and interval $[a, b]$ is given by

$$
\bar{f}=\frac{\int_{a}^{b} f(x) d x}{b-a}
$$

Averages

Definition

The average of $x_{1}, x_{2}, \ldots, x_{n}$ is given by

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

Definition

The average of a function $f(x)$ on and interval $[a, b]$ is given by

$$
\bar{f}=\frac{\int_{a}^{b} f(x) d x}{b-a}
$$

Example: Find the average of $\sin (x)$ on $[0, \pi]$.

Center of mass of particles

Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{n}, y_{n}\right)$ be particles in the plane with masses $m_{1}, m_{2}, \ldots, m_{n}$ respectively.

Then their center of mass is the point (\bar{x}, \bar{y}) where

$$
\begin{aligned}
& \bar{x}=\frac{\sum_{i=1}^{n} x_{i} m_{i}}{\sum_{i=1}^{n} m_{i}} \\
& \bar{y}=\frac{\sum_{i=1}^{n} y_{i} m_{i}}{\sum_{i=1}^{n} m_{i}}
\end{aligned}
$$

Centroid

The centroid is the point at which an object constructed of uniform material would balance. This is different than center of mass.

Definition

(Intuitive) The centroid of a planar region
$R=\{(x, y) \mid a \leq x \leq b, g(x) \leq y \leq f(x)\}$ is the point (\bar{x}, \bar{y}) given by the average values of x and y over R.

Centroid

The centroid is the point at which an object constructed of uniform material would balance. This is different than center of mass.

Definition

(Intuitive) The centroid of a planar region
$R=\{(x, y) \mid a \leq x \leq b, g(x) \leq y \leq f(x)\}$ is the point (\bar{x}, \bar{y}) given by the average values of x and y over R.

We can use symmetry and intuition to conclude information about the centroid

Centroid

The centroid is the point at which an object constructed of uniform material would balance. This is different than center of mass.

Definition
 (Intuitive) The centroid of a planar region
 $R=\{(x, y) \mid a \leq x \leq b, g(x) \leq y \leq f(x)\}$ is the point (\bar{x}, \bar{y}) given by the average values of x and y over R.

We can use symmetry and intuition to conclude information about the centroid
Example: Find the centroid of the interval from a to b using the notion of integrals as averages

Centroid

Definition

The centroid of a planar region
$R=\{(x, y) \mid a \leq x \leq b, g(x) \leq y \leq f(x)\}$ is the point (\bar{x}, \bar{y}) given by,

$$
\begin{gathered}
\bar{x}=\frac{\int_{a}^{b} x(f(x)-g(x)) d x}{\int_{a}^{b} f(x)-g(x) d x} \\
\bar{y}=\frac{\int_{a}^{b} \frac{1}{2}\left((f(x))^{2}-(g(x))^{2}\right) d x}{\int_{a}^{b} f(x)-g(x) d x}
\end{gathered}
$$

Centroid

Definition

The centroid of a planar region
$R=\{(x, y) \mid a \leq x \leq b, g(x) \leq y \leq f(x)\}$ is the point (\bar{x}, \bar{y}) given by,

$$
\begin{gathered}
\bar{x}=\frac{\int_{a}^{b} x(f(x)-g(x)) d x}{\int_{a}^{b} f(x)-g(x) d x} \\
\bar{y}=\frac{\int_{a}^{b} \frac{1}{2}\left((f(x))^{2}-(g(x))^{2}\right) d x}{\int_{a}^{b} f(x)-g(x) d x}
\end{gathered}
$$

Example: Centroid of the portion of the unit disk in the first quadrant

Centroid

Definition

The centroid of a planar region
$R=\{(x, y) \mid a \leq x \leq b, g(x) \leq y \leq f(x)\}$ is the point (\bar{x}, \bar{y}) given by,

$$
\begin{gathered}
\bar{x}=\frac{\int_{a}^{b} x(f(x)-g(x)) d x}{\int_{a}^{b} f(x)-g(x) d x} \\
\bar{y}=\frac{\int_{a}^{b} \frac{1}{2}\left((f(x))^{2}-(g(x))^{2}\right) d x}{\int_{a}^{b} f(x)-g(x) d x}
\end{gathered}
$$

Example: Centroid of the portion of the unit disk in the first quadrant Example: Centroid of the region between $y=4-x^{2}$ and the x-axis.

Centroid

Definition

The centroid of a planar region
$R=\{(x, y) \mid a \leq x \leq b, g(x) \leq y \leq f(x)\}$ is the point (\bar{x}, \bar{y}) given by,

$$
\begin{gathered}
\bar{x}=\frac{\int_{a}^{b} x(f(x)-g(x)) d x}{\int_{a}^{b} f(x)-g(x) d x} \\
\bar{y}=\frac{\int_{a}^{b} \frac{1}{2}\left((f(x))^{2}-(g(x))^{2}\right) d x}{\int_{a}^{b} f(x)-g(x) d x}
\end{gathered}
$$

Example: Centroid of the portion of the unit disk in the first quadrant Example: Centroid of the region between $y=4-x^{2}$ and the x-axis. Example: Centroid of the region between $y=\sin (x)$ and $y=\cos (x)$ for $0 \leq x \leq \frac{\pi}{4}$.

Center of mass

What if the material making up R has a variable density given by $\rho(x)$?

Definition

The center of mass of a planar region $R=\{(x, y) \mid a \leq x \leq b, g(x) \leq y \leq f(x)\}$ with density $\rho(x)$ is the point (\bar{x}, \bar{y}) given by,

$$
\begin{gathered}
\bar{x}=\frac{\int_{a}^{b} x \rho(x)(f(x)-g(x)) d x}{\int_{a}^{b} \rho(x)(f(x)-g(x)) d x} \\
\bar{y}=\frac{\int_{a}^{b} \frac{1}{2} \rho(x)\left((f(x))^{2}-(g(x))^{2}\right) d x}{\int_{a}^{b} \rho(x)(f(x)-g(x)) d x}
\end{gathered}
$$

