Math 104: Calculating Surface Area

Ryan Blair

University of Pennsylvania

Tuesday February 26, 2013

Outline

(1) Shell Method Review

(2) Areas of surfaces of revolution

Shells Method

The general formula for calculating volumes of revolution using the shell method.

Vol $=\int_{a}^{b}$ volume of the shell slice
When rotating about the y-axis we get
Vol $=\int_{a}^{b} 2 \pi($ radius of shell $)($ height of shell $) d x$

Shells Method

The general formula for calculating volumes of revolution using the shell method.

Vol $=\int_{a}^{b}$ volume of the shell slice
When rotating about the y-axis we get
Vol $=\int_{a}^{b} 2 \pi($ radius of shell)(height of shell) $) d x$
Find the volume of the solid obtained by rotating the region in the xy-plane bounded by
$y=x^{3} y=0 x=2$
about the y-axis.

Areas of surfaces of revolution

Definition

The Area of the surface generated by revolving the graph of $y=f(x)$ about the x-axis is

$$
S A=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

The Area of the surface generated by revolving the graph of $x=g(y)$ about the y-axis is

$$
S A=\int_{a}^{b} 2 \pi g(y) \sqrt{1+\left(\frac{d x}{d y}\right)^{2}} d x
$$

Examples

Example 1: Find the area of of the object obtained from rotating the curve $y=\sqrt{4-x^{2}}$ from $x=-1$ to $x=1$ about the x-axis.

Example 2: Find the area of of the object obtained from rotating the curve $y=x^{\frac{1}{3}}$ from $x=0$ to $x=1$ about the y-axis.

Why Math is Awesome!(Gabriel's Horn)

Example 3: Find the area of the object obtained from rotating the curve $y=\frac{1}{x}$ from $x=1$ to $x=b$ about the x-axis.

Example 4: Find the volume of the solid obtained from rotating the region bounded by $y=\frac{1}{x}, x=1, x=b$ and $y=0$ about the x-axis.

Why Math is Awesome!(Gabriel's Horn)

Example 3: Find the area of the object obtained from rotating the curve $y=\frac{1}{x}$ from $x=1$ to $x=b$ about the x-axis.

Example 4: Find the volume of the solid obtained from rotating the region bounded by $y=\frac{1}{x}, x=1, x=b$ and $y=0$ about the x-axis.

Find the limit of these values as b goes to infinity.

