Math 104: Volumes Cont.

Ryan Blair

University of Pennsylvania
Thursday February 21, 2013

Outline

(1) Volumes of Rotation

Volumes of solids of rotation

Replace all x 's with y 's in the following formulas to get other valid expressions for volume.
Disks:
Vol $=\int_{a}^{b} \pi(\text { radius in terms of } x)^{2} d x$

Shells:

Vol $=\int_{a}^{b} 2 \pi($ radius in terms of $x)($ height in terms of $x) d x$

Washers:

$\mathrm{Vol}=$
$\int_{a}^{b} \pi(\text { outer radius in terms of } x)^{2}-\pi(\text { inner radius in terms of } x)^{2} d x$

Volumes of solids of rotation

Replace all x 's with y 's in the following formulas to get other valid expressions for volume.
Disks:
Vol $=\int_{a}^{b} \pi(\text { radius in terms of } x)^{2} d x$

Shells:

Vol $=\int_{a}^{b} 2 \pi($ radius in terms of $x)($ height in terms of $x) d x$

Washers:

Vol $=$
$\int_{a}^{b} \pi(\text { outer radius in terms of } x)^{2}-\pi(\text { inner radius in terms of } x)^{2} d x$
Exercise: Find the volume of the object obtained by rotating the region bounded by the lines $y=x, y=1$ and $x=0$ about the x-axis.

Calculating Volumes of rotation

Let R_{1} be the region in the xy -plane bounded by

$$
\begin{aligned}
& y=x^{3} \\
& x=0 \\
& y=8
\end{aligned}
$$

Let R_{2} be the region in the xy -plane bounded by

$$
\begin{aligned}
& y=x^{3} \\
& y=0 \\
& x=2
\end{aligned}
$$

Calculating Volumes of rotation

Let R_{1} be the region in the xy -plane bounded by

$$
\begin{aligned}
& y=x^{3} \\
& x=0 \\
& y=8
\end{aligned}
$$

Let R_{2} be the region in the xy -plane bounded by

$$
\begin{aligned}
& y=x^{3} \\
& y=0 \\
& x=2
\end{aligned}
$$

Exercise: Find the volume of the region R_{2} rotated about the x-axis.

Calculating Volumes of rotation

Let R_{1} be the region in the $x y$-plane bounded by

$$
\begin{aligned}
& y=x^{3} \\
& x=0 \\
& y=8
\end{aligned}
$$

Let R_{2} be the region in the $x y$-plane bounded by

$$
\begin{aligned}
& y=x^{3} \\
& y=0 \\
& x=2
\end{aligned}
$$

Exercise: Find the volume of the region R_{1} rotated about the line $y=8$.

Calculating Volumes of rotation

Let R_{1} be the region in the xy -plane bounded by

$$
\begin{aligned}
& y=x^{3} \\
& x=0 \\
& y=8
\end{aligned}
$$

Let R_{2} be the region in the xy -plane bounded by

$$
\begin{aligned}
& y=x^{3} \\
& y=0 \\
& x=2
\end{aligned}
$$

Exercise: Find the volume of the region R_{1} rotated about the x-axis.

Calculating Volumes of rotation

Let R_{1} be the region in the xy -plane bounded by

$$
\begin{aligned}
& y=x^{3} \\
& x=0 \\
& y=8
\end{aligned}
$$

Let R_{2} be the region in the xy -plane bounded by

$$
\begin{aligned}
& y=x^{3} \\
& y=0 \\
& x=2
\end{aligned}
$$

Exercise: Find the volume of the region R_{2} rotated about the $y=8$.

Calculating Volumes of rotation

Let R_{1} be the region in the xy -plane bounded by

$$
\begin{aligned}
& y=x^{3} \\
& x=0 \\
& y=8
\end{aligned}
$$

Let R_{2} be the region in the xy -plane bounded by

$$
\begin{aligned}
& y=x^{3} \\
& y=0 \\
& x=2
\end{aligned}
$$

Exercise: Find the volume of the region R_{1} rotated about the y-axis.

Calculating Volumes of rotation

Let R_{1} be the region in the xy -plane bounded by

$$
\begin{aligned}
& y=x^{3} \\
& x=0 \\
& y=8
\end{aligned}
$$

Let R_{2} be the region in the xy -plane bounded by

$$
\begin{aligned}
& y=x^{3} \\
& y=0 \\
& x=2
\end{aligned}
$$

Exercise: Find the volume of the region R_{2} rotated about the y-axis.

Calculating Volumes of rotation

Let R_{1} be the region in the $x y$-plane bounded by

$$
\begin{aligned}
& y=x^{3} \\
& x=0 \\
& y=8
\end{aligned}
$$

Let R_{2} be the region in the $x y$-plane bounded by

$$
\begin{aligned}
& y=x^{3} \\
& y=0 \\
& x=2
\end{aligned}
$$

Exercise: Find the volume of the region R_{1} rotated about the line $y=-1$.

Infinite Shape

Find the volume of the solid obtained by rotating the region in the xy-plane bounded by

$$
\begin{gathered}
x=1 \\
y=0 \\
x=R \\
y=\frac{\ln (x)}{\sqrt{x}}
\end{gathered}
$$

about the x-axis.

Shells Method

Find the volume of the solid obtained by rotating the region in the xy-plane bounded by

$$
\begin{gathered}
y=3 x-x^{2} \\
y=0
\end{gathered}
$$

about the y-axis.

Shells Method

Find the volume of the solid obtained by rotating the region in the xy-plane bounded by

$$
\begin{gathered}
y=3 x-x^{2} \\
y=0
\end{gathered}
$$

about the y-axis.
Shells is much easier than washers for this problem

