Math 104: Volumes

Ryan Blair

University of Pennsylvania

Tuesday February 19, 2013

Ryan Blair (U Penn)

Math 104: Volumes

Tuesday February 19, 2013 1 / 7

590

・ロト ・ 四ト ・ ヨト ・ ヨ

Ryan Blair (U Penn)

Math 104: Volumes

Tuesday February 19, 2013 2 / 7

E

590

◆ロト ◆聞ト ◆国ト ◆国ト

Review

Area between Curves

Find the area between the following two curves in two ways

$$y = \frac{1}{2}x$$

$$y^2 = 8 - x$$

First, by integrating with respect to y. Second, by integrating with respect to x.

イロト 不得下 イヨト イヨト 二日

Area between Curves

Find the area between the following two curves in two ways

$$y=\frac{1}{2}x$$

$$y^2 = 8 - x$$

First, by integrating with respect to y. Second, by integrating with respect to x.

- Sketch the graphs and label points of intersection.
- Write down formulas for the upper and lower boundaries of the region.
- Integrate the difference of the formulas over the appropriate intervals.

Volume Basics

Same idea as areas: Cut up into "small pieces" of infinitesimal "volume elements" and then add up using the definite integral.

イロト 不得下 イヨト イヨト 二日

Same idea as areas: Cut up into "small pieces" of infinitesimal "volume elements" and then add up using the definite integral. **Example:** Find the volume of the box with dimensions

 $0 \le x \le 2$ $1 \le y \le 3$ $2 \le z \le 4$

in three different ways by integrating with respect to x, then y, then z.

▲日▼ ▲母▼ ▲日▼ ▲日▼ ■ ろの⊙

Volume of a Cylinder

Find the volume of a cylinder of height H and radius R by

Exercise 1: Slicing into horizontal disks.

Volume of a Cylinder

Find the volume of a cylinder of height H and radius R by

Exercise 1: Slicing into horizontal disks.

Exercise 2: Slicing into vertical rectangles.

イロト 不得 トイヨト イヨト 二日

Volume of a Cylinder

Find the volume of a cylinder of height H and radius R by

Exercise 1: Slicing into horizontal disks.

Exercise 2: Slicing into vertical rectangles.

Exercise 3: Slicing into vertical ... shells.

Volume of a hyperboloid

Find the volume of the solid obtained by rotating the curve $y = x^2$ from x = -2 to x = 2 about the y-axis by

Exercise 1: Slicing into horizontal disks.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Volume of a hyperboloid

- Find the volume of the solid obtained by rotating the curve $y = x^2$ from x = -2 to x = 2 about the y-axis by
- **Exercise 1:** Slicing into horizontal disks.
- Exercise 2: Slicing into vertical shells.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Volumes of solids of rotation

Replace all x's with y's in the following formulas to get other valid expressions for volume.

Disks:

$$\mathsf{Vol} = \int_{a}^{b} \pi(\mathsf{radius} \text{ in terms of } \mathsf{x})^{2} d\mathsf{x}$$

Shells: Vol = $\int_{a}^{b} 2\pi$ (radius in terms of x)(height in terms of x)dx

Washers:

Vol = $\int_{a}^{b} \pi$ (outer radius in terms of x)² - π (inner radius in terms of x)²dx

▲日▼ ▲母▼ ▲日▼ ▲日▼ ■ ろの⊙

Volumes of solids of rotation

Replace all x's with y's in the following formulas to get other valid expressions for volume.

Disks:

$$\operatorname{Vol} = \int_{a}^{b} \pi(\operatorname{radius} \operatorname{in terms} \operatorname{of} x)^{2} dx$$

Shells: Vol = $\int_{a}^{b} 2\pi$ (radius in terms of x)(height in terms of x)dx

Washers:

Vol = $\int_{a}^{b} \pi$ (outer radius in terms of x)² – π (inner radius in terms of x)² dx

Exercise: Find the volume of the object obtained by rotating the region bounded by the lines y = x, y = 1 and x = 0 about the x-axis.

7 / 7