Math 104: Applications of Definite Integrals

Ryan Blair

University of Pennsylvania

Thursday February 14, 2013

Outline

(1) Review

(2) The Definite Integral as a Tool
(3) Arc Length
4. Area In Polar Coordinates

Types of integrals

Indefinite Integrals represent families of antiderivatives

$$
\int x d x=\frac{x^{2}}{2}+c
$$

Indefinite integrals are useful for solving differential equations.

Types of integrals

Indefinite Integrals represent families of antiderivatives

$$
\int x d x=\frac{x^{2}}{2}+c
$$

Indefinite integrals are useful for solving differential equations.
Definite Integrals represent the area under the curve

$$
\int_{0}^{2} x d x=2
$$

Definite integrals are useful for solving problems is Geometry, Physics and Statistics.

Definition of Definite Integral

Definition

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(a+\frac{b-a}{n} i\right) \frac{b-a}{n}
$$

Fundamental theorem of calculus

Theorem
Let $f(x)$ be a continuous function with antiderivative $G(x)$
©

$$
\frac{d}{d x}\left(\int_{a}^{x} f(t) d t\right)=f(x)
$$

(2)

$$
\int_{a}^{b} f(x) d x=G(b)-G(a)
$$

The big idea:

$$
\int d \ddot{=}=\ddot{ }
$$

The length of a curve

Lets find the length of a curve by approximating by line segments.

The length of a curve

Lets find the length of a curve by approximating by line segments.

If f is continuous on the interval $[a, b]$, then the length of the graph of f from a to b is

$$
L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}}
$$

The length of a curve

Lets find the length of a curve by approximating by line segments.
If f is continuous on the interval $[a, b]$, then the length of the graph of f from a to b is

$$
L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}}
$$

Example: Find circumference of the circle $x^{2}+y^{2}=4$.

Calculating area in different coordinates

To calculate area in Cartesian coordinates we integrate a function of y with respect to $d x$ (vertical bands) or we integrate a function of x with respect to dy (horizontal bands).

Calculating area in different coordinates

To calculate area in Cartesian coordinates we integrate a function of y with respect to $d x$ (vertical bands) or we integrate a function of x with respect to $d y$ (horizontal bands).

To calculate area in Polar coordinates we integrate a function of $\frac{1}{2} r^{2}$ with respect to $d \theta$ (wedges) or we integrate a function of $2 \pi r$ with respect to $d r$ (circular bands).

Calculating area in different coordinates

To calculate area in Cartesian coordinates we integrate a function of y with respect to $d x$ (vertical bands) or we integrate a function of x with respect to $d y$ (horizontal bands).

To calculate area in Polar coordinates we integrate a function of $\frac{1}{2} r^{2}$ with respect to $d \theta$ (wedges) or we integrate a function of $2 \pi r$ with respect to $d r$ (circular bands).

Exercise: Calculate the area of the disk in three different ways: using wedges, using circular bands and using vertical bands

