Math 103: One-Sided Limits of Functions

Ryan Blair

University of Pennsylvania

Thursday September 15, 2011

Outline

Review

2 One-Sided Limits

Definition of Limit

Definition

If f(x) is arbitrarily close to L for all x sufficiently close to x_0 , we say f approaches the **limit** L as x approaches x_0 and write:

$$lim_{x\to x_0}f(x)=L$$

Definition of Limit

Definition

If f(x) is arbitrarily close to L for all x sufficiently close to x_0 , we say f approaches the **limit** L as x approaches x_0 and write:

$$lim_{x\to x_0}f(x)=L$$

Last time we saw

- Limit laws
- Theorems regarding polynomials and rational functions
- How to evaluate a limit if there is a zero in the denominator

The Sandwich Theorem

Theorem

If
$$f(x) \le g(x) \le h(x)$$
 when x is near c and $\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$ then $\lim_{x \to c} g(x) = L$

The Sandwich Theorem

Theorem

If
$$f(x) \le g(x) \le h(x)$$
 when x is near c and $lim_{x \to c} f(x) = lim_{x \to c} h(x) = L$ then $lim_{x \to c} g(x) = L$

Evaluate:

$$\lim_{x\to 0} x^2 \sin(\frac{1}{x})$$

Definition of One-Sided Limit

Definition

If f(x) is arbitrarily close to L for all x sufficiently close to c and greater than c, we say f approaches the **rigth-hand limit** L as x approaches c and write:

$$lim_{x\to c^+}f(x)=L$$

Definition of One-Sided Limit

Definition

If f(x) is arbitrarily close to L for all x sufficiently close to c and greater than c, we say f approaches the **rigth-hand limit** L as x approaches c and write:

$$lim_{x\to c^+}f(x)=L$$

Definition

If f(x) is arbitrarily close to L for all x sufficiently close to c and less than c, we say f approaches the **left-hand limit** L as x approaches c and write:

$$\lim_{x\to c^-} f(x) = L$$

Theorem

$$lim_{x\to c}f(x)=L$$

if and only if

$$\lim_{x\to c^+} f(x) = L$$
 and $\lim_{x\to c^-} f(x) = L$.

Theorem

$$lim_{x \to 0} \frac{sin(x)}{x} = 1$$

