Math 103: Limits and One-Sided Limits of Functions

Ryan Blair

University of Pennsylvania
Tuesday September 13, 2011

Outline

(1) Limits of Functions

(2) One-Sided Limits

Motivating Question:

How do we determine the behavior of a function near a point without worrying about its behavior at the point?

Motivating Question:

How do we determine the behavior of a function near a point without worrying about its behavior at the point?

Example: How does the following function behave near $x=1$

$$
f(x)=\frac{x^{3}-x^{2}}{x-1}
$$

The Answer is the Limit!

Definition

If $f(x)$ is arbitrarily close to L for all x sufficiently close to x_{0}, we say f approaches the limit L as x approaches x_{0} and write:

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

The Answer is the Limit!

Definition

If $f(x)$ is arbitrarily close to L for all x sufficiently close to x_{0}, we say f approaches the limit L as x approaches x_{0} and write:

$$
\lim _{x \rightarrow x_{0}} f(x)=L
$$

Evaluate

$$
\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}}{x-1}
$$

Limit Laws I

If L, M, a and k are real numbers and

$$
\lim _{x \rightarrow a} f(x)=L \text { and } \lim _{x \rightarrow a} g(x)=M
$$

(1) $\lim _{x \rightarrow a}[f(x)+g(x)]=L+M$
(2) $\lim _{x \rightarrow a}[f(x)-g(x)]=L-M$
(3) $\lim _{x \rightarrow a}[k f(x)]=k L$
(1) $\lim _{x \rightarrow a}[f(x) g(x)]=L M$

- $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L}{M} M \neq 0$
(- $\lim _{x \rightarrow a}[f(x)]^{n}=L^{n}, n \in \mathbb{Z}^{+}$
(1) $\lim _{x \rightarrow a}[f(x)]^{\frac{1}{n}}=L^{\frac{1}{n}}, n \in \mathbb{Z}^{+}$

Some Limit Theorems

Theorem

Given a polynomial $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}$, then

$$
\lim _{x \rightarrow c} P(x)=a_{n} c^{n}+a_{n-1} c^{n-1}+\ldots+a_{0}=P(c)
$$

Some Limit Theorems

Theorem
Given a polynomial $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{0}$, then

$$
\lim _{x \rightarrow c} P(x)=a_{n} c^{n}+a_{n-1} c^{n-1}+\ldots+a_{0}=P(c)
$$

Theorem

If $Q(x)$ and $P(x)$ are polynomials and $Q(c) \neq 0$, then

$$
\lim _{x \rightarrow c} \frac{P(x)}{Q(x)}=\frac{P(c)}{Q(c)}
$$

Evaluating Limits Involving Zeros in the Denominator

Sometimes we can still use the equality

$$
\lim _{x \rightarrow c} \frac{P(x)}{Q(x)}=\frac{P(c)}{Q(c)}
$$

even if $Q(c)=0$

Evaluating Limits Involving Zeros in the Denominator

Sometimes we can still use the equality

$$
\lim _{x \rightarrow c} \frac{P(x)}{Q(x)}=\frac{P(c)}{Q(c)}
$$

even if $Q(c)=0$
Evaluate:

$$
\lim _{x \rightarrow 0} \frac{x^{3}+x}{x^{2}-x}
$$

The Sandwich Theorem

Theorem
If $f(x) \leq g(x) \leq h(x)$ when x is near c and

$$
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} h(x)=L
$$

then $\lim _{x \rightarrow c} g(x)=L$

The Sandwich Theorem

Theorem
If $f(x) \leq g(x) \leq h(x)$ when x is near c and

$$
\begin{gathered}
\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} h(x)=L \\
\text { then } \lim _{x \rightarrow c} g(x)=L
\end{gathered}
$$

Evaluate:

$$
\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)
$$

Definition of One-Sided Limit

Definition

If $f(x)$ is arbitrarily close to L for all x sufficiently close to c and greater than c, we say f approaches the rigth-hand limit L as x approaches c and write: $\lim _{x \rightarrow c^{+}} f(x)=L$

Definition

If $f(x)$ is arbitrarily close to L for all x sufficiently close to c and less than c, we say f approaches the left-hand limit L as x approaches c and write:
$\lim _{x \rightarrow c^{-}} f(x)=L$

Theorem

$$
\lim _{x \rightarrow c} f(x)=L
$$

if and only if
$\lim _{x \rightarrow c^{+}} f(x)=L$ and $\lim _{x \rightarrow c^{-}} f(x)=L$.

