Math 103: Big Concepts Review

Ryan Blair

University of Pennsylvania
Thursday December 8, 2011

Outline

Final Exam Announcements

(1) On Wednesday December 14 th from 9 am to 11 am.
(2) The exam is accumulative.
(3) Last names beginning with $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D report to Cohen Hall 402.
(9) Everyone else takes the exam in Cohen Hall 17.
(5) Allowed one 8.5 by 11 sheet of notes front and back
(2) Bring your Penn ID.
(1) The final is 15 questions.

What to study for the final

(1) Old final exams (http://www.math.upenn.edu/ugrad/calc/m103/oldexams.html)
(2) Our practice midterms and midterms (http://www.math.upenn.edu/ ryblair/Math103F11/index.html)
(3) Homework problems and examples done in class.
(3) Extra office hours Monday from 4 to 6 pm and Tuesday from 4 to 6 pm .

Derivative as a function

Given any function $f(x)$ we want to find a new function that, for any x-value, outputs the slope of $f(x)$ at that value.

Derivative as a function

Given any function $f(x)$ we want to find a new function that, for any x-value, outputs the slope of $f(x)$ at that value.

Definition

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Derivative as a function

Given any function $f(x)$ we want to find a new function that, for any x-value, outputs the slope of $f(x)$ at that value.

Definition

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Notation.Other ways of writing the derivative of $y=f(x)$.

$$
f^{\prime}(x)=y^{\prime}=\frac{d y}{d x}=\frac{d f}{d x}=\frac{d}{d x} f(x)=D f(x)=D_{x} f(x)
$$

The Intermediate Value Theorem and Mean Value Theorem

Theorem

Suppose $f(x)$ is continuous on $[a, b]$ and if y_{0} is any value between $f(a)$ and $f(b)$, then $y_{0}=f(c)$ from some c in $[a, b]$.

Theorem

Suppose $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b). Then there exists a number c such that $a<c<b$ and

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

L'Hospital's Rule for $\frac{0}{0}$

Theorem

Suppose $f(a)=g(a)=0, f$ and g are differentiable near a and $g^{\prime}(x) \neq 0$ for x near a but not equal to a, Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if the right-hand limit exists.

L'Hospital's Rule for $\frac{0}{0}$

Theorem

Suppose $f(a)=g(a)=0, f$ and g are differentiable near a and $g^{\prime}(x) \neq 0$ for x near a but not equal to a, Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if the right-hand limit exists.
The theorem also holds for one-sided limits and infinite limits.

L'Hospital's Rule for $\frac{0}{0}$

Theorem

Suppose $f(a)=g(a)=0, f$ and g are differentiable near a and $g^{\prime}(x) \neq 0$ for x near a but not equal to a, Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if the right-hand limit exists.
The theorem also holds for one-sided limits and infinite limits.
This only helps us with indeterminant forms $\frac{0}{0}$.

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,
(1) Find the domain of $f(x)$ and any symmetries.

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,
(1) Find the domain of $f(x)$ and any symmetries.
(2) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,
(1) Find the domain of $f(x)$ and any symmetries.
(2) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(3) Find the critical points of f and determine the behavior at each.

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,
(1) Find the domain of $f(x)$ and any symmetries.
(2) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(3) Find the critical points of f and determine the behavior at each.
(3) Find where the graph of f is increasing and decreasing.

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,
(1) Find the domain of $f(x)$ and any symmetries.
(2) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(3) Find the critical points of f and determine the behavior at each.
(3) Find where the graph of f is increasing and decreasing.
(5) Find the points of inflection and the concavity of f.

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,
(1) Find the domain of $f(x)$ and any symmetries.
(2) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(3) Find the critical points of f and determine the behavior at each.
(3) Find where the graph of f is increasing and decreasing.
(5) Find the points of inflection and the concavity of f.
(2) Identify any asymptotes.

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,
(1) Find the domain of $f(x)$ and any symmetries.
(2) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(3) Find the critical points of f and determine the behavior at each.
(3) Find where the graph of f is increasing and decreasing.
(5) Find the points of inflection and the concavity of f.
(3) Identify any asymptotes.
(1) Plot key points and asymptotes, and sketch the curve.

Example

A boat is being pulled toward a dock by a rope from the bow of the boat to the bottom of the dock which is 6 ft above the the bow. If the rope is hauled at a rate of $2 \frac{\mathrm{ft}}{\mathrm{sec}}$, at what rate is the angle θ changing when there is 10 ft of rope between the boat and the dock.
(1) Draw a picture representing the problem.
(2) Introduce variables and find a formula for the quantity being optimized.
(3) Use the information in the problem to express the quantity being optimized in terms of a single variable.
(9) Use the first derivative test to find the local minima and maxima.
(5) Finish solving the problem.

Example A cylindrical can is made out of two metals. The metal used to make the sides costs 2 cents per square inch, the metal used to make the top and bottom costs 3 cents per square inch. What are the dimensions of the lowest cost can that will hold 12 cubic inches.

Example A cylindrical can is made out of two metals. The metal used to make the sides costs 2 cents per square inch, the metal used to make the top and bottom costs 3 cents per square inch. What are the dimensions of the lowest cost can that will hold 12 cubic inches. How To Approach These Problems
(1) Draw a picture and name the variables and constants.
(2) Write down any additional numerical info.
(3) Write down what you are asked to find.
(9) Write an equation that relates the quantities.
(5) Differentiate with respect to t.
(0) Finish solving the problem. Remember units.

Theorem

If f is continuous on $[a, b]$, or if f has only a finite number of jump discontinuities, then f is integrable on $[a, b]$; that is, the definite integral $\int_{a}^{b} f(x) d x$ exists.

Theorem

If f is continuous on $[a, b]$, or if f has only a finite number of jump discontinuities, then f is integrable on $[a, b]$; that is, the definite integral $\int_{a}^{b} f(x) d x$ exists.

Theorem

If f is integrable on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

where $\Delta x=\frac{b-a}{n}$ and $c_{i}=a+i \Delta x$.

Theorem

(Fundamental Theorem of Calculus, Part 1) If f is continuous on $[a, b]$, then the function g defined by

$$
g(x)=\int_{a}^{x} f(t) d t \quad a \leq x \leq b
$$

is continuous on $[a, b]$ and differentiable on (a, b), and $g^{\prime}(x)=f(x)$.

Theorem

(Fundamental Theorem of Calculus, Part 1) If f is continuous on $[a, b]$, then the function g defined by

$$
g(x)=\int_{a}^{x} f(t) d t a \leq x \leq b
$$

is continuous on $[a, b]$ and differentiable on (a, b), and $g^{\prime}(x)=f(x)$.

Theorem

(Fundamental Theorem of Calculus, Part 2) If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Where F is any antiderivative of f, that is, a function such that $F^{\prime}=f$.

U-Substitution for definite integrals

Theorem

If $u=g(x)$ is a differentiable function and f is continuous, then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

Finding the Area Enclosed by Curves

Steps to Find the Area Enclosed by Curves

(1) Draw a picture illustrating the inclosed region.
(2) Find the points of intersection for all pairs of curves.
(3) Decide if you will integrate with respect to x or y.
(9) Write down the integral (or sum of integrals) that represents the area and evaluate it.

Good Luck on the Exam!

