Math 103: Logarithmic, Trigonometric and Exponential Integrals

Ryan Blair

University of Pennsylvania
Tuesday December 6, 2011

Outline

(1) Review: Area Between Curves

(2) Trig Integrals

(3) Log and Exponent Integrals

Area Between Curves

Theorem

If f and g are continuous functions with $f(x) \geq g(x)$ throughout $[a, b]$, then the area of the region between the curves $y=f(x)$ and $y=g(x)$ from \mathbf{a} to \mathbf{b} is given by

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Area Between Curves

Theorem

If f and g are continuous functions with $f(x) \geq g(x)$ throughout $[a, b]$, then the area of the region between the curves $y=f(x)$ and $y=g(x)$ from a to \mathbf{b} is given by

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Steps to Find the Area Enclosed by Curves

(1) Draw a picture illustrating the inclosed region.
(2) Find the points of intersection for all pairs of curves.
(3) Decide if you will integrate with respect to x or y.
(- Write down the integral (or sum of integrals) that represents the area and evaluate it.

Trig Integrals

Know these and know how to derive them.
(1) $\int \cos ^{2}(x) d x=\frac{x}{2}+\frac{\sin (2 x)}{4}+C$
(2) $\int \sin ^{2}(x) d x=\frac{x}{2}-\frac{\sin (2 x)}{4}+C$
(3) $\int \tan (x) d x=\ln |\sec (x)|+C$
(9) $\int \cot (x) d x=\ln |\sin (x)|+C$
(5) $\int \sec (x) d x=\ln |\sec (x)+\tan (x)|+C$
(0) $\int \csc (x) d x=-\ln |\csc (x)+\cot (x)|+C$

Log and Exponent Integrals

Recall the following
(1) $\int e^{x} d x=e^{x}+C$
(2) $\int a^{x} d x=\frac{a^{x}}{\ln (a)}+C$
(3) $\int \frac{1}{x} d x=\ln |x|+C$
(-) $\log _{a}(b)=\frac{\ln (b)}{\ln (a)}$

