Math 103: The Substitution Method and the area between curves

Ryan Blair
University of Pennsylvania

Thursday October 1, 2011

Outline

(1) U-Sub for Definite Integrals

(2) Area Between Curves

U-Substitution for definite integrals

Theorem

If $u=g(x)$ is a differentiable function and f is continuous, then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

U-Substitution for definite integrals

Theorem

If $u=g(x)$ is a differentiable function and f is continuous, then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

Theorem

If $u=g(x)$ is a differentiable function and f is continuous, then

$$
\int_{a}^{b} f(g(x)) g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u
$$

Definite integrals of even and odd functions

Theorem
Let f be a continuous function on the interval $[-a, a]$.
(1) If f is even, then $\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x$
(2) If f is odd, then $\int_{-a}^{a} f(x) d x=0$

Area Between Curves

Theorem

If f and g are continuous functions with $f(x) \geq g(x)$ throughout $[a, b]$, then the area of the region between the curves $y=f(x)$ and $y=g(x)$ from a to \mathbf{b} is given by

$$
A=\int_{a}^{b}[f(x)-g(x)] d x
$$

Finding the Area Enclosed by Curves

Steps to Find the Area Enclosed by Curves

(1) Draw a picture illustrating the inclosed region.
(2) Find the points of intersection for all pairs of curves.
(3) Decide if you will integrate with respect to x or y.
(9) Write down the integral (or sum of integrals) that represents the area and evaluate it.

