Math 103: Optimization

Ryan Blair

University of Pennsylvania
Tuesday November 8, 2011

Outline

(1) Midterm Two Info

(2) Optimization

Where to Find More Practice Problems for Midterm 2

(1) Practice Midterm 2
http://www.math.upenn.edu/~ryblair/Math103F11/index.html
(2) Old Practice Midterm 2 http://www.math.upenn.edu/~ryblair/Math 103/index.html
(3) Examples done in class
(9) Old Final exam problems
http://www.math.upenn.edu/ugrad/calc/m103/oldexams.html
(5) Homework

Proofs that could be on the exam

(1) Use Rolle's theorem to prove the Mean Value Theorem. Page 231.
(2) Derive the formula for $\frac{d}{d x}\left(f^{-1}(x)\right)$. Page 177
(3) Derive the formula for $\frac{d}{d x}\left(\sin ^{-1}(x)\right)$. Page 188
(9) Derive the formula for $\frac{d}{d x}\left(\tan ^{-1}(x)\right)$. Page 188
(5) Use the Mean value theorem to show that if $f(x)$ and $g(x)$ are everywhere differentiable functions such that $f^{\prime}(x)=g^{\prime}(x)$, then there exists a constant C such that $f(x)=g(x)+C$. Page 233.
(6) The first derivative theorem for local extreme values. Page 225.

Example

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that boarders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?

Example

A farmer has 2400 ft of fencing and wants to fence off a rectangular field that boarders a straight river. He needs no fence along the river. What are the dimensions of the field that has the largest area?
Steps to Solving Optimization Problems
(1) Draw a picture representing the problem.
(2) Introduce variables and find a formula for the quantity being optimized.
(3 Use the information in the problem to express the quantity being optimized in terms of a single variable.
(1) Use the first derivative test to find the local minima and maxima.
(0) Finish solving the problem.

Example

A cylindrical can is to be made to hold 1 L of oil. Find the dimensions that will minimize the cost of the metal to manufacture the can.
(1) Draw a picture representing the problem.
(2) Introduce variables and find a formula for the quantity being optimized.
(3) Use the information in the problem to express the quantity being optimized in terms of a single variable.
(1) Use the first derivative test to find the local minima and maxima.
(0) Finish solving the problem.

Example

Find the point on the parabola $y^{2}=2 x$ that is closest to the point $(1,4)$.
(3) Draw a picture representing the problem.
(2) Introduce variables and find a formula for the quantity being optimized.
(3) Use the information in the problem to express the quantity being optimized in terms of a single variable.
(1) Use the first derivative test to find the local minima and maxima.

- Finish solving the problem.

Example

Find the dimensions of a rectangle of largest area that can be inscribed in an equilateral triangle of side length L if one side of the rectangle lies on the base of the triangle.
(1) Draw a picture representing the problem.
(2) Introduce variables and find a formula for the quantity being optimized.
(3) Use the information in the problem to express the quantity being optimized in terms of a single variable.
(1) Use the first derivative test to find the local minima and maxima.
(0) Finish solving the problem.

