Math 103: L'Hopital's Rule

Ryan Blair

University of Pennsylvania
Thursday November 3, 2011

Outline

(1) L'Hospital's Rule

(2) Review

Indeterminant forms

For some limits evaluation via substation gives meaningless expressions called Indeterminant Forms

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\frac{0}{0}
$$

Indeterminant forms

For some limits evaluation via substation gives meaningless expressions called Indeterminant Forms

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\frac{0}{0} \\
\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=\frac{\infty}{\infty}
\end{gathered}
$$

Indeterminant forms

For some limits evaluation via substation gives meaningless expressions called Indeterminant Forms

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\frac{0}{0} \\
\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=\frac{\infty}{\infty}
\end{gathered}
$$

$$
\lim _{x \rightarrow \frac{\pi}{2}^{-}} \tan (x)-\frac{1}{\left(x-\frac{\pi}{2}\right)^{2}}=\infty-\infty
$$

Indeterminant forms

For some limits evaluation via substation gives meaningless expressions called Indeterminant Forms

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=\frac{0}{0} \\
\lim _{x \rightarrow \infty} \frac{x}{e^{x}}=\frac{\infty}{\infty} \\
\lim _{x \rightarrow \frac{\pi}{2}^{-}} \tan (x)-\frac{1}{\left(x-\frac{\pi}{2}\right)^{2}}=\infty-\infty
\end{gathered}
$$

Other indeterminant forms include $\infty \cdot 0,0^{0}$ and 1^{∞}

L'Hospital's Rule for $\frac{0}{0}$

Theorem

Suppose $f(a)=g(a)=0, f$ and g are differentiable near a and $g^{\prime}(x) \neq 0$ for x near a but not equal to a, Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if the right-hand limit exists.

L'Hospital's Rule for $\frac{0}{0}$

Theorem

Suppose $f(a)=g(a)=0, f$ and g are differentiable near a and $g^{\prime}(x) \neq 0$ for x near a but not equal to a, Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if the right-hand limit exists.
The theorem also holds for one-sided limits and infinite limits.

L'Hospital's Rule for $\frac{0}{0}$

Theorem

Suppose $f(a)=g(a)=0, f$ and g are differentiable near a and $g^{\prime}(x) \neq 0$ for x near a but not equal to a, Then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if the right-hand limit exists.
The theorem also holds for one-sided limits and infinite limits.
This only helps us with indeterminant forms $\frac{0}{0}$.

L'Hospital's Rule for $\frac{\infty}{\infty}$

Theorem

Suppose $f(x) \rightarrow \infty$ and $g(x) \rightarrow \infty$ as $x \rightarrow a$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if the right-hand limit exists.

L'Hospital's Rule for $\frac{\infty}{\infty}$

Theorem

Suppose $f(x) \rightarrow \infty$ and $g(x) \rightarrow \infty$ as $x \rightarrow a$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if the right-hand limit exists.
The theorem also holds for one-sided limits and infinite limits.

L'Hospital's Rule for $\frac{\infty}{\infty}$

Theorem

Suppose $f(x) \rightarrow \infty$ and $g(x) \rightarrow \infty$ as $x \rightarrow a$, then

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

if the right-hand limit exists.
The theorem also holds for one-sided limits and infinite limits.
Must convert other indeterminant forms to $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,
(1) Find the domain of $f(x)$ and any symmetries.

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,
(1) Find the domain of $f(x)$ and any symmetries.
(3) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,
(3) Find the domain of $f(x)$ and any symmetries.
(3) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(0) Find the critical points of f and determine the behavior at each.

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,
(1) Find the domain of $f(x)$ and any symmetries.
(3) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(0) Find the critical points of f and determine the behavior at each.
(9) Find where the graph of f is increasing and decreasing.

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,
(1) Find the domain of $f(x)$ and any symmetries.
(3) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(0) Find the critical points of f and determine the behavior at each.
(9) Find where the graph of f is increasing and decreasing.
(0) Find the points of inflection and the concavity of f.

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,
(1) Find the domain of $f(x)$ and any symmetries.
(3) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(0) Find the critical points of f and determine the behavior at each.
(9) Find where the graph of f is increasing and decreasing.
(0) Find the points of inflection and the concavity of f.

- Identify any asymptotes.

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,
(1) Find the domain of $f(x)$ and any symmetries.
(3) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(0) Find the critical points of f and determine the behavior at each.
(9) Find where the graph of f is increasing and decreasing.
(0) Find the points of inflection and the concavity of f.

- Identify any asymptotes.
(1) Plot key points and asymptotes, and sketch the curve.

