Math 103: Indefinite Integrals and the Substitution Method

Ryan Blair

University of Pennsylvania

Tuesday November 29, 2011

Outline

(1) Review

(2) Indefinite Integral

(3) Substitution

Three ways to evaluate a definite integral

(1) The area under the curve.
(2) The limit definition.
(3) The Fundamental Theorem of Calculus.

Three ways to evaluate a definite integral

(1) The area under the curve.
(2) The limit definition.
(3) The Fundamental Theorem of Calculus.

Theorem
If f is integrable on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x
$$

where $\Delta x=\frac{b-a}{n}$ and the c_{i} are a collection of sample points.

Three ways to evaluate a definite integral

(1) The area under the curve.
(2) The limit definition.
(3) The Fundamental Theorem of Calculus.

Theorem

(Fundamental Theorem of Calculus, Part 2) If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Where F is any antiderivative of f, that is, a function such that $F^{\prime}=f$.

Indefinite Integral

Definition

The collection of all antiderivatives of f is called the indefinite integral of f with respect to x, and is denoted by

$$
\int f(x) d x
$$

Indefinite Integral

Definition

The collection of all antiderivatives of f is called the indefinite integral of f with respect to x, and is denoted by

$$
\int f(x) d x
$$

Key Idea: To find the indefinite integral of functions we don't know the antiderivative of we can run chain rule backwards.

The Substitution Rule

Theorem
If $u=g(x)$ is a differentiable function and f is continuous, then

$$
\int f(g(x)) g^{\prime}(x) d x=\int f(u) d u
$$

