Math 103: Antiderivatives and the Area Under a Curve

Ryan Blair

University of Pennsylvania

Thursday November 10, 2011

Ryan Blair (U Penn)

Math 103: Antiderivatives and the Area Unde Thursday November 10, 2011 1 / 12

- L - L - L

Sac

2 Antiderivatives

Ryan Blair (U Penn) Math 103: Antiderivatives and the Area Unde Thursday November 10, 2011 2 / 12

イロト イポト イヨト イヨト

E

Where to Find More Practice Problems for Midterm 2

Practice Midterm 2

 $http://www.math.upenn.edu/{\sim}ryblair/Math103F11/index.html$

- Old Practice Midterm 2 http://www.math.upenn.edu/~ryblair/Math 103/index.html
- Examples done in class
- Old Final exam problems http://www.math.upenn.edu/ugrad/calc/m103/oldexams.html
- Homework

・ 戸 ト ・ ヨ ト ・ ヨ ト …

Proofs that could be on the exam

- Use Rolle's theorem to prove the Mean Value Theorem. Page 231.
- 2 Derive the formula for $\frac{d}{dx}(f^{-1}(x))$. Page 177
- Solution Derive the formula for $\frac{d}{dx}(sin^{-1}(x))$. Page 188
- Derive the formula for $\frac{d}{dx}(tan^{-1}(x))$. Page 188
- Solution Use the Mean value theorem to show that if f(x) and g(x) are everywhere differentiable functions such that f'(x) = g'(x), then there exists a constant C such that f(x) = g(x) + C. Page 233.
- The first derivative theorem for local extreme values. Page 225.

Midterm Two Info

Sections Covered on Midterm 2

3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10 4.1, 4.2, 4.3, 4.4, 4.5, 4.6

Ryan Blair (U Penn)

Math 103: Antiderivatives and the Area Unde Thursday November 10, 2011 5 / 12

• • = • • = •

Definition

A function F is called the **antiderivative** of f on an interval I if F'(x) = f(x) for all x in I.

• • = • • = •

Definition

A function F is called the **antiderivative** of f on an interval I if F'(x) = f(x) for all x in I.

Theorem

If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

F(x) + C

where C is an arbitrary constant.

P

Given
$$F' = f$$
 and $G' = g$

Function	Particular Antiderivative
cf(x)	cF(x)
f(x) + g(x)	F(x) + G(x)
$x^n \ n eq 1$	$\frac{x^{n+1}}{n+1}$
cos(x)	sin(x)
sin(x)	-cos(x)
$sec^{2}(x)$	tan(x)
sec(x)tan(x)	sec(x)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Indefinite Integral

Definition

The collection of all antiderivatives of f is called the **indefinite integral** of f with respect to x, and is denoted by

$$\int f(x)dx$$

Ryan Blair (U Penn)

Example

Show that for motion in a straight line with constant acceleration a, initial velocity v_0 and and initial displacement s_0 , the displacement after time t is given by

$$S(t)=\frac{1}{2}at^2+v_0t+s_0$$

• • = • • = •

We want to use rectangles of uniform width to estimate the area under a curve. There are 3 ways to do this

|▲ @ ▶ ▲ 注 ▶ ▲ 注 ▶ ○ 2 ● ○ 2 ○ 0 2 ○

We want to use rectangles of uniform width to estimate the area under a curve. There are 3 ways to do this

If we choose the height of each rectangle to be the largest value of f(x) for a point x in the base interval of the rectangle, the estimate is an upper sum

- 御下 - 戸下 - 戸下 - 戸

We want to use rectangles of uniform width to estimate the area under a curve. There are 3 ways to do this

- If we choose the height of each rectangle to be the largest value of f(x) for a point x in the base interval of the rectangle, the estimate is an upper sum
- If we choose the height of each rectangle to be the smallest value of f(x) for a point x in the base interval of the rectangle, the estimate is a lower sum

イロト 不得下 イヨト イヨト 二日

We want to use rectangles of uniform width to estimate the area under a curve. There are 3 ways to do this

- If we choose the height of each rectangle to be the largest value of f(x) for a point x in the base interval of the rectangle, the estimate is an upper sum
- If we choose the height of each rectangle to be the smallest value of f(x) for a point x in the base interval of the rectangle, the estimate is a lower sum
- If we choose the height of each rectangle to be the value of f(x) at the midpoint of the base interval, the estimate is an midpoint sum

イロト イポト イヨト イヨト

п	L _n	Un
10	.285	.385
20	.308	.358
30	.316	.350
50	.323	.343
100	.328	.338
1000	.333	.334

うしん 同一 ふかく 山下 ふきゃく ロッ

The general form of area estimates

If we want to estimate the area under the curve y = f(x)on the interval [a, b], we divide the interval up into nsubintervals of length $\Delta x = \frac{b-a}{n}$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The general form of area estimates

If we want to estimate the area under the curve y = f(x)on the interval [a, b], we divide the interval up into nsubintervals of length $\Delta x = \frac{b-a}{n}$. Then we pick a point c_k in the k-th subinterval and estimate the hight of the rectangle as $f(c_k)$.

・ 「「・ ・ 」 ・ ・ 」 ・ ・ 」

The general form of area estimates

If we want to estimate the area under the curve y = f(x)on the interval [a, b], we divide the interval up into nsubintervals of length $\Delta x = \frac{b-a}{n}$. Then we pick a point c_k in the k-th subinterval and estimate the hight of the rectangle as $f(c_k)$. Then an estimate of the area is given by the following sum

$$f(c_1) \cdot \Delta x + f(c_2) \cdot \Delta x + \ldots + f(c_n) \cdot \Delta x$$

・何ト ・ヨト ・ヨト ・ヨ