Math 103: Antiderivatives and the Area Under a Curve

Ryan Blair

University of Pennsylvania
Thursday November 10, 2011

Outline

(1) Midterm Two Info
(2) Antiderivatives
(2) Approximating Area with Finite Sums

Where to Find More Practice Problems for Midterm 2

(1) Practice Midterm 2
http://www.math.upenn.edu/~ryblair/Math103F11/index.html
(2) Old Practice Midterm 2
http://www.math.upenn.edu/~ryblair/Math 103/index.html
(3) Examples done in class
(9) Old Final exam problems
http://www.math.upenn.edu/ugrad/calc/m103/oldexams.html
(5) Homework

Proofs that could be on the exam

(1) Use Rolle's theorem to prove the Mean Value Theorem. Page 231.
(2) Derive the formula for $\frac{d}{d x}\left(f^{-1}(x)\right)$. Page 177
(3) Derive the formula for $\frac{d}{d x}\left(\sin ^{-1}(x)\right)$. Page 188
(9) Derive the formula for $\frac{d}{d x}\left(\tan ^{-1}(x)\right)$. Page 188
(5) Use the Mean value theorem to show that if $f(x)$ and $g(x)$ are everywhere differentiable functions such that $f^{\prime}(x)=g^{\prime}(x)$, then there exists a constant C such that $f(x)=g(x)+C$. Page 233.
(6) The first derivative theorem for local extreme values. Page 225.

Sections Covered on Midterm 2

$3.4,3.5,3.6,3.7,3.8,3.9,3.10$
$4.1,4.2,4.3,4.4,4.5,4.6$

Definition
 A function F is called the antiderivative of f on an interval $/$ if $F^{\prime}(x)=f(x)$ for all x in I.

Definition

A function F is called the antiderivative of f on an interval $/$ if $F^{\prime}(x)=f(x)$ for all x in I.

Theorem
If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

$$
F(x)+C
$$

where C is an arbitrary constant.

Given $F^{\prime}=f$ and $G^{\prime}=g$

Function	Particular Antiderivative
$c f(x)$	$c F(x)$
$f(x)+g(x)$	$F(x)+G(x)$
$x^{n} n \neq 1$	$\frac{x^{n+1}}{n+1}$
$\cos (x)$	$\sin (x)$
$\sin (x)$	$-\cos (x)$
$\sec ^{2}(x)$	$\tan (x)$
$\sec (x) \tan (x)$	$\sec (x)$

Indefinite Integral

Definition

The collection of all antiderivatives of f is called the indefinite integral of f with respect to x, and is denoted by

$$
\int f(x) d x
$$

Example

Show that for motion in a straight line with constant acceleration a, initial velocity v_{0} and and initial displacement s_{0}, the displacement after time t is given by

$$
S(t)=\frac{1}{2} a t^{2}+v_{0} t+s_{0}
$$

Area Under $y=x^{2}$ between 0 and 1

We want to use rectangles of uniform width to estimate the area under a curve. There are 3 ways to do this

Area Under $y=x^{2}$ between 0 and 1

We want to use rectangles of uniform width to estimate the area under a curve. There are 3 ways to do this
(1) If we choose the height of each rectangle to be the largest value of $f(x)$ for a point x in the base interval of the rectangle, the estimate is an upper sum

Area Under $y=x^{2}$ between 0 and 1

We want to use rectangles of uniform width to estimate the area under a curve. There are 3 ways to do this
(1) If we choose the height of each rectangle to be the largest value of $f(x)$ for a point x in the base interval of the rectangle, the estimate is an upper sum
(2) If we choose the height of each rectangle to be the smallest value of $f(x)$ for a point x in the base interval of the rectangle, the estimate is a lower sum

Area Under $y=x^{2}$ between 0 and 1

We want to use rectangles of uniform width to estimate the area under a curve. There are 3 ways to do this
(1) If we choose the height of each rectangle to be the largest value of $f(x)$ for a point x in the base interval of the rectangle, the estimate is an upper sum
(2) If we choose the height of each rectangle to be the smallest value of $f(x)$ for a point x in the base interval of the rectangle, the estimate is a lower sum

- If we choose the height of each rectangle to be the value of $f(x)$ at the midpoint of the base interval, the estimate is an midpoint sum

n	L_{n}	U_{n}
10	.285	.385
20	.308	.358
30	.316	.350
50	.323	.343
100	.328	.338
1000	.333	.334

The general form of area estimates

If we want to estimate the area under the curve $y=f(x)$ on the interval $[a, b]$, we divide the interval up into n subintervals of length $\Delta x=\frac{b-a}{n}$.

The general form of area estimates

If we want to estimate the area under the curve $y=f(x)$ on the interval $[a, b]$, we divide the interval up into n subintervals of length $\Delta x=\frac{b-a}{n}$.
Then we pick a point c_{k} in the k-th subinterval and estimate the hight of the rectangle as $f\left(c_{k}\right)$.

The general form of area estimates

If we want to estimate the area under the curve $y=f(x)$ on the interval $[a, b]$, we divide the interval up into n subintervals of length $\Delta x=\frac{b-a}{n}$.
Then we pick a point c_{k} in the k-th subinterval and estimate the hight of the rectangle as $f\left(c_{k}\right)$.
Then an estimate of the area is given by the following sum

$$
f\left(c_{1}\right) \cdot \Delta x+f\left(c_{2}\right) \cdot \Delta x+\ldots+f\left(c_{n}\right) \cdot \Delta x
$$

