Math 103: Concavity and Using Derivatives to Graph a Function

Ryan Blair

University of Pennsylvania

Tuesday November 1, 2011

Outline

(1) Review

(2) Concavity and the Second Derivative Test
(3) How to Use Derivatives to Sketch a Function

First Derivative Test

Suppose that c is a critical number of a continuous function f.

First Derivative Test

Suppose that c is a critical number of a continuous function f.
(1) If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.

First Derivative Test

Suppose that c is a critical number of a continuous function f.
(1) If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
(2) If f^{\prime} changes from negative to positive at c, then f has a local minimum at c.

First Derivative Test

Suppose that c is a critical number of a continuous function f.
(1) If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
(2) If f^{\prime} changes from negative to positive at c, then f has a local minimum at c.
(3) If f does not change sign at c, then f has no local maximum or minimum at c.

Definition
 If a graph of f lies above all of its tangents on an interval I, then is is called concave up on I. If a graph of f lies below all of its tangents on an interval I, then is is called concave down on l.

Definition

If a graph of f lies above all of its tangents on an interval I, then is is called concave up on I. If a graph of f lies below all of its tangents on an interval I, then is is called concave down on l.

Concavity test

(1) If $f^{\prime \prime}(x)>0$ for all x in I, then the graph of f is concave up on I.
(2) If $f^{\prime \prime}(x)<0$ for all x in I, then the graph of f is concave down on I.

Definition
 A point P on a continuous curve $y=f(x)$ is called and inflection point if f changes from concave down to concave up or visa versa at P.

The Second Derivative Test

Suppose $f^{\prime \prime}$ is continuous near c.
(1) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at c.
(2) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at c.

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,
(1) Find the domain of $f(x)$ and any symmetries.

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,
(1) Find the domain of $f(x)$ and any symmetries.
(3) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,
(1) Find the domain of $f(x)$ and any symmetries.
(3) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(0) Find the critical points of f and determine the behavior at each.

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,
(1) Find the domain of $f(x)$ and any symmetries.
(3) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(0) Find the critical points of f and determine the behavior at each.
(9) Find where the graph of f is increasing and decreasing.

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,
(1) Find the domain of $f(x)$ and any symmetries.
(3) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(0) Find the critical points of f and determine the behavior at each.
(9) Find where the graph of f is increasing and decreasing.
(c) Find the points of inflection and the concavity of f.

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,
(3) Find the domain of $f(x)$ and any symmetries.
(3) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.
(0) Find the critical points of f and determine the behavior at each.
(9) Find where the graph of f is increasing and decreasing.
(0) Find the points of inflection and the concavity of f.

- Identify any asymptotes.

Guidelines for Curve Sketching

To sketch the graph of $y=f(x)$,
(1) Find the domain of $f(x)$ and any symmetries.
(3) Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$.

- Find the critical points of f and determine the behavior at each.
(9) Find where the graph of f is increasing and decreasing.
(0) Find the points of inflection and the concavity of f.
- Identify any asymptotes.
(1) Plot key points and asymptotes, and sketch the curve.

Definition

The line $y=m x+b$ is a slant asymptote for $f(x)$ if

$$
\lim _{x \rightarrow \infty}[f(x)-(m x+b)]=0
$$

If $f(x)=\frac{p(x)}{q(x)}$ where $q(x)$ and $p(x)$ are polynomials, then $f(x)$ has a slant asymptote if and only if the degree of $p(x)$ is one more than the degree of $q(x)$.

