Math 103: Trig Derivatives and Rate of Change Problems

Ryan Blair

University of Pennsylvania
Tuesday October 4, 2011

Outline

(1) Review

Derivative Rules

(1) $\frac{d}{d x}(c)=0$
(2) $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$

- $\frac{d}{d x}(c f(x))=c \frac{d}{d x}(f(x))$
($\frac{d}{d x}[f(x)+g(x)]=\frac{d}{d x}[f(x)]+\frac{d}{d x}[g(x)]$
- $\frac{d}{d x}\left[a^{x}\right]=\ln (a) a^{x}$
- $\frac{d}{d x}[f(x) g(x)]=f(x) \frac{d}{d x}(g(x))+g(x) \frac{d}{d x}(f(x))$
(0) $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{g(x) \frac{d}{d x}(f(x))-f(x) \frac{d}{d x}(g(x))}{(g(x))^{2}}$

Theorem
If $f(x)=\sin (x)$, then $f^{\prime}(x)=\cos (x)$.

Theorem
If $f(x)=\sin (x)$, then $f^{\prime}(x)=\cos (x)$.
This is challenging to prove, so we need some lemmas.

Theorem
If $f(x)=\sin (x)$, then $f^{\prime}(x)=\cos (x)$.
This is challenging to prove, so we need some lemmas. Lemmas:
(1) $\sin (x+h)=\sin (x) \cos (h)+\cos (x) \sin (h)$
(2) $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1$
(- $\lim _{\theta \rightarrow 0} \frac{(\cos (\theta)-1)}{\theta}=0$

Theorem

If $f(x)=\sin (x)$, then $f^{\prime}(x)=\cos (x)$.
This is challenging to prove, so we need some lemmas. Lemmas:
(1) $\sin (x+h)=\sin (x) \cos (h)+\cos (x) \sin (h)$
(2) $\lim _{\theta \rightarrow 0} \frac{\sin (\theta)}{\theta}=1$
(- $\lim _{\theta \rightarrow 0} \frac{(\cos (\theta)-1)}{\theta}=0$
Can show in a similar fashion $\frac{d}{d x}(\cos (x))=-\sin (x)$

More Trig Derivatives

More Trig Derivatives
 - $\frac{d}{d x}(\cos (x))=-\sin (x)$

More Trig Derivatives

(1) $\frac{d}{d x}(\cos (x))=-\sin (x)$
(2) $\frac{d}{d x}(\tan (x))=(\sec (x))^{2}$

More Trig Derivatives

(1) $\frac{d}{d x}(\cos (x))=-\sin (x)$
(2) $\frac{d}{d x}(\tan (x))=(\sec (x))^{2}$

- $\frac{d}{d x}(\csc (x))=-\csc (x) \cot (x)$

More Trig Derivatives

(1) $\frac{d}{d x}(\cos (x))=-\sin (x)$
(2) $\frac{d}{d x}(\tan (x))=(\sec (x))^{2}$

- $\frac{d}{d x}(\csc (x))=-\csc (x) \cot (x)$
- $\frac{d}{d x}(\sec (x))=\sec (x) \tan (x)$

More Trig Derivatives

(1) $\frac{d}{d x}(\cos (x))=-\sin (x)$
(2) $\frac{d}{d x}(\tan (x))=(\sec (x))^{2}$

- $\frac{d}{d x}(\csc (x))=-\csc (x) \cot (x)$
(- $\frac{d}{d x}(\sec (x))=\sec (x) \tan (x)$
- $\frac{d}{d x}(\cot (x))=-(\csc (x))^{2}$

Instantaneous Velocity

Definition

If $s(t)$ is a position function defined in terms of time t, then the instantaneous velocity at time $t=a$ is given by

$$
v(a)=\lim _{h \rightarrow 0} \frac{s(a+h)-s(a)}{h}
$$

Instantaneous Velocity

Definition

If $s(t)$ is a position function defined in terms of time t, then the instantaneous velocity at time $t=a$ is given by

$$
v(a)=\lim _{h \rightarrow 0} \frac{s(a+h)-s(a)}{h}
$$

ExampleSuppose a penny is dropped from the top of DRL which is 19.6 meters high. The position of the penny in terms of hight above the street is given by $s(t)=19.6-4.9 t^{2}$. At what is the velocity of the penny when it hits the ground.

Position, Velocity, Acceleration and Jerk

If the position of a body at time t is given by $s(t)$ then
(1) Velocity at time t is given by $v(t)=\frac{d s}{d t}$
(2) Acceleration at time t is given by $a(t)=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}$

- Jerk at time t is given by $j(t)=\frac{d a}{d t}=\frac{d^{2} v}{d t^{2}}=\frac{d^{3} s}{d t^{3}}$

Harmonic Motion

A weight hanging from the end of a spring is stretched 3 units past its resting position. Its position at time t is

Harmonic Motion

A weight hanging from the end of a spring is stretched 3 units past its resting position. Its position at time t is

$$
s(t)=-3 \cos (t)
$$

What is the velocity and acceleration of the weight at time t ?

