Math 103: The Mean Value Theorem and How Derivatives Shape a Graph

Ryan Blair

University of Pennsylvania
Thursday October 27, 2011

Outline

(1) Review

(2) Mean Value Theorem
(3) Using Derivatives to Determine the Shape of a Graph

Review

Last time we learned
(1) How to find local minima and maxima.
(2) How to find absolute minima and maxima.
(How the derivative relates to minima and maxima.

Review

Last time we learned
(1) How to find local minima and maxima.
(2) How to find absolute minima and maxima.
(How the derivative relates to minima and maxima.

Theorem

Suppose $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b). If $f(a)=f(b)$, then there exists a number c such that $a<c<b$ and $f^{\prime}(c)=0$.

The Mean Value Theorem

Theorem

Suppose $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b). Then there exists a number c such that $a<c<b$ and

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

Important Consequence

Theorem
If $f^{\prime}(x)=g^{\prime}(x)$ for all points in (a, b), then there exists a constant C such that $f(x)=g(x)+C$ for all points in (a, b).

Increasing and Decreasing

Recall from last time

Theorem
(Fermat's Theorem)
If f has a local maximum or minimum at c, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

But we can say more:

Increasing and Decreasing

Recall from last time

Theorem
(Fermat's Theorem)
If f has a local maximum or minimum at c, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

But we can say more:
Theorem
Suppose f is differentiable on $[a, b]$.
(1) If $f^{\prime}(x)>0$ on $[a, b]$, then f is increasing on $[a, b]$.
(2) If $f^{\prime}(x)<0$ on $[a, b]$, then f is decreasing on $[a, b]$.

First Derivative Test

Suppose that c is a critical number of a continuous function f.

First Derivative Test

Suppose that c is a critical number of a continuous function f.
(1) If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.

First Derivative Test

Suppose that c is a critical number of a continuous function f.
(1) If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
(2) If f^{\prime} changes from negative to positive at c, then f has a local minimum at c.

First Derivative Test

Suppose that c is a critical number of a continuous function f.
(1) If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
(2) If f^{\prime} changes from negative to positive at c, then f has a local minimum at c.
(3) If f does not change sign at c, then f has no local maximum or minimum at c.

Definition
 If a graph of f lies above all of its tangents on an interval I, then is is called concave up on I. If a graph of f lies below all of its tangents on an interval I, then is is called concave down on l.

Definition

If a graph of f lies above all of its tangents on an interval I, then is is called concave up on I. If a graph of f lies below all of its tangents on an interval l, then is is called concave down on l.

Concavity test

(1) If $f^{\prime \prime}(x)>0$ for all x in I, then the graph of f is concave up on I.
(2) If $f^{\prime \prime}(x)<0$ for all x in I, then the graph of f is concave down on I.

Definition
 A point P on a continuous curve $y=f(x)$ is called and inflection point if f changes from concave down to concave up or visa versa at P.

The Second Derivative Test

Suppose $f^{\prime \prime}$ is continuous near c.
(1) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local minimum at c.
(2) If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$, then f has a local maximum at c.

Example $\operatorname{Letf}(x)=3 x^{\frac{2}{3}}-x$
(3) Find intervals of increase and decrease
(2) find all local max and min
(3) find intervals of concavity and the inflection points

- Sketch the graph

