Math 103: Extreme Values of Functions and the Mean Value Theorem

Ryan Blair

University of Pennsylvania

Tuesday October 25, 2011

Outline

(1) Extreme Values of Functions

Definition

A function f has an absolute maximum at c if $f(c) \geq f(x)$ for all x in the domain of $f . f(c)$ is the maximum value of f.

A function f has an absolute minimum at c if $f(c) \leq f(x)$ for all x in the domain of $f . f(c)$ is the minimum value of f

Definition

A function f has an absolute maximum at c if $f(c) \geq f(x)$ for all x in the domain of $f . f(c)$ is the maximum value of f.

A function f has an absolute minimum at c if $f(c) \leq f(x)$ for all x in the domain of $f . f(c)$ is the minimum value of f

Definition

A function f has an local maximum at c if $f(c) \geq f(x)$ when x is near c.

A function f has an local minimum at c if $f(c) \leq f(x)$ when x is near c.

Theorem

(Extreme Value Theorem)
If f is continuous on a closed interval $[a, b]$, then f attains an absolute maximum value $f(c)$ and an absolute minimum value $f(d)$ at some numbers c and d in $[a, b]$.

Theorem

(Fermat's Theorem)
If f has a local maximum or minimum at c, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

Theorem

(Fermat's Theorem)
If f has a local maximum or minimum at c, and if $f^{\prime}(c)$ exists, then $f^{\prime}(c)=0$.

Definition

A Critical Point of a function f is a number c in the domain of f such that either $f^{\prime}(c)=0$ or $f^{\prime}(c)$ is undefined.

The Closed Interval Method

To find the absolute maximum and minimum values of a continuous function f on a closed interval $[a, b]$:

Step 1: Find the values of f at the critical numbers of f in (a, b).

Step 2: Find the values of f at a and b.
Step 3: The largest of the values from step 1 and step 2 is the absolute maximum value; the smallest of the values from step 1 and step 2 is the absolute minimum value.

Rolle's Theorem

Theorem

Suppose $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b). If $f(a)=f(b)$, then there exists a number c such that $a<c<b$ and $f^{\prime}(c)=0$.

The Mean Value Theorem

Theorem

Suppose $f(x)$ is continuous on $[a, b]$ and differentiable on (a, b). Then there exists a number c such that $a<c<b$ and

$$
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)
$$

Important Consequence

Theorem
If $f^{\prime}(x)=g^{\prime}(x)$ for all points in (a, b), then there exists a constant C such that $f(x)=g(x)+C$ for all points in (a, b).

