Math 103: Derivatives of Inverse Functions and Logs

Ryan Blair

University of Pennsylvania

Tuesday October 18, 2011

Ryan Blair (U Penn)

Math 103: Derivatives of Inverse Functions au Tuesday October 18, 2011

1/6

イロト イポト イヨト イヨト

E

Suppose f(x) is a function with inverse $f^{-1}(x)$ with each defined on the appropriate domain and range.

$$\frac{d}{dx}(f^{-1}(x)) = \frac{1}{f'(f^{-1}(x))}$$

Suppose f(x) is a function with inverse $f^{-1}(x)$ with each defined on the appropriate domain and range.

$$\frac{d}{dx}(f^{-1}(x)) = \frac{1}{f'(f^{-1}(x))}$$

Exercise Find the slope of the tangent line to $y = x^2$ at (2, 4) and find the slope of the tangent line to $y = \sqrt{(x)}$ at (4, 2).

・何ト ・ヨト ・ヨト ・ヨ

Derivatives of Inverse Functions and Logs

Properties of Logarithmic Functions

• If a > 1 and x, y > 0, then $log_a(xy) = log_a(x) + log_a(y)$.

프 문 문 프 문

Properties of Logarithmic Functions

• If
$$a > 1$$
 and $x, y > 0$, then
 $log_a(xy) = log_a(x) + log_a(y)$.

• If
$$a > 1$$
 and $x, y > 0$, then
 $log_a(\frac{x}{y}) = log_a(x) - log_a(y)$.

イロト イポト イヨト イヨト

E

Properties of Logarithmic Functions

• If
$$a > 1$$
 and $x, y > 0$, then
 $log_a(xy) = log_a(x) + log_a(y)$.

• If
$$a > 1$$
 and $x, y > 0$, then
 $log_a(\frac{x}{y}) = log_a(x) - log_a(y)$.

• If a > 1 and x, y > 0, then $log_a(x^r) = (r)(log_a(x))$.

Properties of Logarithmic Functions

• If
$$a > 1$$
 and $x, y > 0$, then
 $log_a(xy) = log_a(x) + log_a(y)$.

• If
$$a > 1$$
 and $x, y > 0$, then
 $log_a(\frac{x}{y}) = log_a(x) - log_a(y)$.

• If a > 1 and x, y > 0, then $log_a(x^r) = (r)(log_a(x))$. • $\frac{d}{dx}(ln(x)) = \frac{1}{x}$

Change of Base Formula

For any positive number $a \ (a \neq 0)$, we have

$$log_a(x) = rac{ln(x)}{ln(a)}$$

Ryan Blair (U Penn)

Image: A matrix and a matrix

프 문 문 프 문

Derivatives of Inverse Trig Functions

$$\frac{d}{dx}(\sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$$

 Ryan Blair
 (U Penn)
 Math 103: Derivatives of Inverse Functions at
 Tuesday October 18, 2011
 6 / 6

- 2

<ロト <四ト < 臣ト < 臣ト

Derivatives of Inverse Trig Functions

•
$$\frac{d}{dx}(sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$$

• $\frac{d}{dx}(tan^{-1}(x)) = \frac{1}{1+x^2}$

<ロト <四ト < 臣ト < 臣ト

- 2

Derivatives of Inverse Trig Functions

•
$$\frac{d}{dx}(sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$$

• $\frac{d}{dx}(tan^{-1}(x)) = \frac{1}{1+x^2}$
• $\frac{d}{dx}(sec^{-1}(x)) = \frac{1}{|x|\sqrt{x^2-1}}$

Ryan Blair (U Penn)

イロト イポト イヨト イヨト

590

•
$$\frac{d}{dx}(sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$$

• $\frac{d}{dx}(tan^{-1}(x)) = \frac{1}{1+x^2}$
• $\frac{d}{dx}(sec^{-1}(x)) = \frac{1}{|x|\sqrt{x^2-1}}$
• $\frac{d}{dx}(cos^{-1}(x)) = \frac{-1}{\sqrt{1-x^2}}$

Ryan Blair (U Penn)

<ロト < 団ト < 巨ト < 巨ト

590

- 2

•
$$\frac{d}{dx}(sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$$

• $\frac{d}{dx}(tan^{-1}(x)) = \frac{1}{1+x^2}$
• $\frac{d}{dx}(sec^{-1}(x)) = \frac{1}{|x|\sqrt{x^2-1}}$
• $\frac{d}{dx}(cos^{-1}(x)) = \frac{-1}{\sqrt{1-x^2}}$
• $\frac{d}{dx}(cot^{-1}(x)) = \frac{-1}{1+x^2}$

<ロト < 団ト < 巨ト < 巨ト

590

- 2

$$\frac{d}{dx}(sin^{-1}(x)) = \frac{1}{\sqrt{1-x^2}}$$
 $\frac{d}{dx}(tan^{-1}(x)) = \frac{1}{1+x^2}$
 $\frac{d}{dx}(sec^{-1}(x)) = \frac{1}{|x|\sqrt{x^2-1}}$
 $\frac{d}{dx}(cos^{-1}(x)) = \frac{-1}{\sqrt{1-x^2}}$
 $\frac{d}{dx}(cot^{-1}(x)) = \frac{-1}{1+x^2}$
 $\frac{d}{dx}(csc^{-1}(x)) = \frac{-1}{|x|\sqrt{x^2-1}}$