Math 103: Derivatives of Inverse Functions and Logs

Ryan Blair

University of Pennsylvania
Tuesday October 18, 2011

Outline

(1) Derivatives of Inverse Functions and Logs

(2) Derivatives of Inverse Trig Functions

Derivatives of Inverse Functions

Suppose $f(x)$ is a function with inverse $f^{-1}(x)$ with each defined on the appropriate domain and range.

$$
\frac{d}{d x}\left(f^{-1}(x)\right)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Derivatives of Inverse Functions

Suppose $f(x)$ is a function with inverse $f^{-1}(x)$ with each defined on the appropriate domain and range.

$$
\frac{d}{d x}\left(f^{-1}(x)\right)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

Exercise Find the the slope of the tangent line to $y=x^{2}$ at $(2,4)$ and find the slope of the tangent line to $y=\sqrt{(x)}$ at $(4,2)$.

Properties of Logarithmic Functions

(3) If $a>1$ and $x, y>0$, then $\log _{a}(x y)=\log _{a}(x)+\log _{a}(y)$.

Properties of Logarithmic Functions

(1) If $a>1$ and $x, y>0$, then $\log _{a}(x y)=\log _{a}(x)+\log _{a}(y)$.
(2) If $a>1$ and $x, y>0$, then $\log _{a}\left(\frac{x}{y}\right)=\log _{a}(x)-\log _{a}(y)$.

Properties of Logarithmic Functions

(1) If $a>1$ and $x, y>0$, then $\log _{a}(x y)=\log _{a}(x)+\log _{a}(y)$.
(2) If $a>1$ and $x, y>0$, then $\log _{a}\left(\frac{x}{y}\right)=\log _{a}(x)-\log _{a}(y)$.
(3) If $a>1$ and $x, y>0$, then $\log _{a}\left(x^{r}\right)=(r)\left(\log _{a}(x)\right)$.

Properties of Logarithmic Functions

(1) If $a>1$ and $x, y>0$, then $\log _{a}(x y)=\log _{a}(x)+\log _{a}(y)$.
(2) If $a>1$ and $x, y>0$, then $\log _{a}\left(\frac{x}{y}\right)=\log _{a}(x)-\log _{a}(y)$.
(3) If $a>1$ and $x, y>0$, then $\log _{a}\left(x^{r}\right)=(r)\left(\log _{a}(x)\right)$.
(- $\frac{d}{d x}(\ln (x))=\frac{1}{x}$

Change of Base Formula

For any positive number a $(a \neq 0)$, we have

$$
\log _{a}(x)=\frac{\ln (x)}{\ln (a)}
$$

Derivatives of Inverse Trig Functions

(1) $\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$

Derivatives of Inverse Trig Functions

(3) $\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$
(2) $\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$

Derivatives of Inverse Trig Functions

(3) $\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$
(2) $\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$

- $\frac{d}{d x}\left(\sec ^{-1}(x)\right)=\frac{1}{|x| \sqrt{x^{2}-1}}$

Derivatives of Inverse Trig Functions

(3) $\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$
(2) $\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$

- $\frac{d}{d x}\left(\sec ^{-1}(x)\right)=\frac{1}{|x| \sqrt{x^{2}-1}}$
(1) $\frac{d}{d x}\left(\cos ^{-1}(x)\right)=\frac{-1}{\sqrt{1-x^{2}}}$

Derivatives of Inverse Trig Functions

(1) $\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$
(2) $\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$

- $\frac{d}{d x}\left(\sec ^{-1}(x)\right)=\frac{1}{|x| \sqrt{x^{2}-1}}$
(1) $\frac{d}{d x}\left(\cos ^{-1}(x)\right)=\frac{-1}{\sqrt{1-x^{2}}}$
(1) $\frac{d}{d x}\left(\cot ^{-1}(x)\right)=\frac{-1}{1+x^{2}}$

Derivatives of Inverse Trig Functions

(3) $\frac{d}{d x}\left(\sin ^{-1}(x)\right)=\frac{1}{\sqrt{1-x^{2}}}$
(2) $\frac{d}{d x}\left(\tan ^{-1}(x)\right)=\frac{1}{1+x^{2}}$

- $\frac{d}{d x}\left(\sec ^{-1}(x)\right)=\frac{1}{|x| \sqrt{x^{2}-1}}$
(1) $\frac{d}{d x}\left(\cos ^{-1}(x)\right)=\frac{-1}{\sqrt{1-x^{2}}}$
(3) $\frac{d}{d x}\left(\cot ^{-1}(x)\right)=\frac{-1}{1+x^{2}}$
- $\frac{d}{d x}\left(\csc ^{-1}(x)\right)=\frac{-1}{|x| \sqrt{x^{2}-1}}$

