Math 103: The Chain Rule and Implicit Differentiation

Ryan Blair

University of Pennsylvania
Thursday October 13, 2011

Outline

(1) Review

(2) The Chain Rule

(3) Implicit Differentiation

Trig Derivatives

Trig Derivatives
 - $\frac{d}{d x}(\sin (x))=\cos (x)$

Trig Derivatives

- $\frac{d}{d x}(\sin (x))=\cos (x)$
- $\frac{d}{d x}(\cos (x))=-\sin (x)$

Trig Derivatives

- $\frac{d}{d x}(\sin (x))=\cos (x)$
- $\frac{d}{d x}(\cos (x))=-\sin (x)$
- $\frac{d}{d x}(\tan (x))=(\sec (x))^{2}$

Trig Derivatives

- $\frac{d}{d x}(\sin (x))=\cos (x)$
- $\frac{d}{d x}(\cos (x))=-\sin (x)$
- $\frac{d}{d x}(\tan (x))=(\sec (x))^{2}$
- $\frac{d}{d x}(\csc (x))=-\csc (x) \cot (x)$

Trig Derivatives

- $\frac{d}{d x}(\sin (x))=\cos (x)$
- $\frac{d}{d x}(\cos (x))=-\sin (x)$
- $\frac{d}{d x}(\tan (x))=(\sec (x))^{2}$
- $\frac{d}{d x}(\csc (x))=-\csc (x) \cot (x)$
- $\frac{d}{d x}(\sec (x))=\sec (x) \tan (x)$

Trig Derivatives

- $\frac{d}{d x}(\sin (x))=\cos (x)$
- $\frac{d}{d x}(\cos (x))=-\sin (x)$
- $\frac{d}{d x}(\tan (x))=(\sec (x))^{2}$
- $\frac{d}{d x}(\csc (x))=-\csc (x) \cot (x)$
- $\frac{d}{d x}(\sec (x))=\sec (x) \tan (x)$
- $\frac{d}{d x}(\cot (x))=-(\csc (x))^{2}$

Composite functions

A function $F(x)$ is a composite function if it can be written as $F(x)=f(g(x))$ for two functions $f(x)$ and $g(x)$.

Chain Rule

If g is differentiable at x and f is differentiable at $g(x)$, then the composition function $F=f \circ g$ defined by $F(x)=f(g(x))$ is differentiable at x and

$$
F^{\prime}(x)=f^{\prime}(g(x)) g^{\prime}(x)
$$

Most of the functions we have investigated so far can be described by expressing one variable in terms of another explicitly.
(1) $y=x^{2}+2$
(2) $y=\sin (x)$

- $y=\sqrt{(\sin (x))^{2}+1}$

However, some functions are better defined implicitly.
(1) $x^{2}+y^{2}=1$
(2) $y^{5}+3 x^{2} y^{2}+5 x^{4}=12$
(3) $2\left(x^{2}+y^{2}\right)^{2}=25\left(x^{2}-y^{2}\right)$
(- $\cos (x) \sin (y)=1$
Goal: Find y^{\prime} without having to solve for y.

Implicit Differentiation

(1) Differentiate both sides of the equation with respect to x, treating y as a differentiable function of x.
(2) Collect the terms with $\frac{d y}{d x}$ on one side of the equation and solve for $\frac{d y}{d x}$.

