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Integration on Chains In Euclidean Space

Integration on Chains in Euclidean Space

The subset [0, 1]k ⊂ R
k is the standard unit cube in R

k .

Let U be an open subset of R
n. A singular k-cube in U is a continuous

map c : [0, 1]k → U.

A singular 0-cube in U is, in effect, just a point of U, and a singular
1-cube in U is a parametrized curve in U.
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Integration on Chains In Euclidean Space

The standard (singular) k-cube I k : [0, 1]k → R
k is the inclusion map of

the standard unit cube.

A (singular) k-chain in U is a formal finite sum of singular k-cubes in U

with integer coefficients, such as

2c1 + 3c2 − 4c3.

It is clear how k-chains in U can be added and multiplied by integers.
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Integration on Chains In Euclidean Space

For each singular k-chain c in U we will define a singular k − 1 chain in U

called the boundary of c and denoted by ∂(c).

We begin by defining the boundary of the standard k-cube
I k : [0, 1]k → R

k .

For each i with 1 ≤ i ≤ k we define two singular k − 1 cubes,
I k
(i ,0) : [0, 1]k−1 → [0, 1]k ⊂ R

k I k
(i ,1) : [0, 1]k−1 → [0, 1]k ⊂ R

k , as follows.

I k
(i ,0)(x

1, ..., xk−1) = (x1, ..., x i−1, 0, x i , ..., xk−1)

I k
(i ,1)(x

1, ..., xk−1) = (x1, ..., x i−1, 1, x i , ..., xk−1)
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Integration on Chains In Euclidean Space

We call I k
(i ,0) the (i , 0)-face of I k and I k

(i ,1) the (i , 1)-face. of I k . Then we
define

∂(I k) =

k∑
i=1

∑
α=0,1

(−1)i+αI k
(i ,α).

If c : [0, 1]k → U is a singular k-cube in U, we define its (i , α)-face by
c(i , α) = c ◦ I k

(i ,α), and then define

∂(c) =

k∑
i=1

∑
α=0,1

(−1)i+αc(i , α).

We extend the definition of boundary to k-chains by linearity:
∂(Σaici ) = Σai∂(ci ).
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Integration on Chains In Euclidean Space

Fact: If c is a k-chain in U, show that ∂(∂c) = 0. Briefly, ∂2 = 0.
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Integration on Chains In Euclidean Space

Now suppose that U is an open set in R
n, that c is a k-chain in U, and

that ω is a differential k-form on U. We want to define the integral
∫
c
ω

of ω over c , and do this in several steps.

First suppose that ω is a differential k-form on the unit k-cube [0, 1]k in
R

k . Then
ω = f (x1, ..., xk )dx1 ∧ ... ∧ dxk .

In that case we define∫
[0,1]k

ω =

∫
[0,1]k

f =

∫
[0,1]k

f (x1, ..., xk )dx1...dxk .
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Integration on Chains In Euclidean Space

If ω is a differential k-form on the open set U in R
n and c : [0, 1]k → U is

a singular k-cube in U, we define

∫
c

ω =

∫
[0,1]k

c∗ω.

In other words, integration of a k-form over a singular k-cube is defined by
pulling the k-form back to the unit k-cube in R

k and then doing ordinary
integration.

In the special case that k = 0, a 0-form ω on U is a real-valued function
on U, and a singular 0-cube is a map c : {0} → U of a point into U. So
we define ∫

c

ω = ω(c(0)).
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Integration on Chains Stoke’s Theorem in Euclidean Space

Finally, the integral of a k-form ω on U over a singular k-chain c = Σaici

is defined by ∫
c

ω = Σai

∫
ci

ω.

Theorem

Stokes’ Theorem. Let U be an open set in R
n, ω a differential k − 1

form on U, and c a singular k-chain on U. Then

∫
c

dω =

∫
∂c

ω.
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Integration on Chains Green’s Theorem

Theorem

Green’s Theorem. Let U be a compact region in R
2 bounded by finitely

many smooth, simple closed curves.

Let u(x , y) and v(x , y) be smooth functions on U.

Then ∫
∂(U)

u(x , y) dx + v(x , y) dy =

∫
U

(
∂v

∂x
−

∂u

∂y
dx dy .

Proof. Let c be a singular 2-chain which covers the region U, so that
∂(c) covers ∂(U). There is some subtlety in proving the existence of c ,
but we will deal with this at a later time.
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Integration on Chains Green’s Theorem

Let ω = u(x , y) dx + v(x , y) dy . Then

dω = (
∂v

∂x
−

∂u

∂y
) dx ∧ dy .

So Green’s Theorem states that∫
∂c

ω =

∫
c

dω,

which is just a special case of Stokes’ Theorem.
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Integration on Chains Divergence Theorem

Theorem

Divergence Theorem. Let U be a compact region in R
3 bounded by

finitely many smooth surfaces. Let n be the outward pointing unit normal

vector field along ∂(U). Let V be a differentiable vector field on U. Then

∫
U

∇ • V d(vol) =

∫
∂(U)

V • n d(area).

Proof. In words, the integral of the divergence of V over the region U

equals the flux of V through its boundary. Let

V = u(x , y , z)i + v(x , y , z)j + w(x , y , z)k

and
n = nx(x , y , z)i + ny (x , y , z)j + nz(x , y , z)k.
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Integration on Chains Divergence Theorem

Then
∫
U
∇ • Vd(vol) =

∫
U

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

dxdydz∫
∂(U) V • nd(area) =

∫
∂(U)(unx + vny + wnz)d(area).

Now define a 2-form ω on U by

ω = u(x , y , z)dy ∧ dz + v(x , y , z)dz ∧ dx + w(x , y , z)dx ∧ dy .

Then dω = (∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

) dx ∧ dy ∧ dz .
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Integration on Chains Divergence Theorem

Thus ∫
U

∇ • Vd(vol) =

∫
c

dω,

where c is a singular 3-chain that covers the region U so that ∂c covers
∂U, as in Green’s Theorem.

Fact:

(unx + vny + wnz)d(area) = udy ∧ dz + vdz ∧ dx + wdx ∧ dy .
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Integration on Chains Divergence Theorem

Using the result of the above problem, we have that

∫
∂U

V • nd(area) =

∫
∂U

(unx + vny + wnz)d(area)

=

∫
∂c

(udy ∧ dz + vdz ∧ dx + wdx ∧ dy)

=

∫
∂c

ω.

So the Divergence Theorem,

∫
U

∇ • Vd(vol) =

∫
∂U

V • nd(area),

is a special case of Stokes’ Theorem,

∫
c

dω =

∫
∂c

ω.
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Integration on Chains Divergence Theorem

Theorem

Classical Stokes’ Theorem. Let S be a compact, smooth oriented

surface in R
3 with finitely many smooth boundary curves.

Let n be the unit ”outward” normal vector field along S, and T the unit

tangent vector field along ∂S.

Let V be a smooth vector field defined on an open set in R
3 which

contains S.

Then ∫
S

(∇× V ) • nd(area) =

∫
∂S

V • Td(length).

Ryan Blair (U Penn) Math 600: Integration on Chains and Stoke’s TheoremTuesday November 9, 2010 17 / 17


	Integration on Chains
	In Euclidean Space
	Stoke's Theorem in Euclidean Space
	Green's Theorem
	Divergence Theorem


