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Differentiation

Definition

A function f : R
m → R

n is said to be differentiable at the point x0 ∈ R
m if

there is a linear map A : R
m → R

nsuch that

limh→0
|f (x0 + h) − f (x0) − A(h)|

|h|
= 0

.
The linear map A is called the derivative of f at x0 and written as either
f ′(x0) or as dfx0.
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Differentiation Chain Rule

Theorem

(Chain Rule) Let
R

m − f → R
n − g → R

p

with x0 − f → y0 − g → z0.

Suppose f is differentiable at x0 with derivative f ′(x0) and that g is
differentiable at y0 with derivative g ′(y0).

Then the composition g ◦ f is differentiable at x0 with derivative

(g ◦ f )′(x0) = g ′(y0)f
′(x0)

.
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Differentiation Chain Rule

Proof of the Chain Rule.

In an intuitively taught calculus course, the truth of the chain rule is
sometimes suggested by multiplying ”fractions”:

dz

dx
=

dz

dy

dy

dx
.

This argument comes to grief when nonzero changes in x produce zero
changes in y .
The simple finesse is to avoid fractions, as follows.
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Differentiation Chain Rule

Without loss of generality, and for ease of notation, we will assume that
the points x0ǫR

m, y0ǫR
n and z0ǫR

p are all located at their respective
origins.

We let L = f ′(x0) and M = g ′(y0) .

Then differentiability of f and g at these points means that

(f (x) − L(x))

|x |
→ 0 as x → 0, and

(g(y) − M(y))

|y |
→ 0 as y → 0.

We must show that

(g ◦ f (x) − M ◦ L(x))

|x |
→ 0 as x → 0.
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Differentiation Chain Rule

Using the differentiability of f and g at their origins, we have that

|gf (x) − ML(x)|

= |gf (x) − Mf (x) + Mf (x) − ML(x)|

≤ |gf (x) − Mf (x)| + |M||f (x) − L(x)|

< ε|f (x)| + |M|ε|x |

for |x | sufficiently small.
Then dividing by |x |, we get

|gf (x) − ML(x)|

|x |
< ε

|f (x)|

|x |
+ |M|ε

.
We must show that this is small when |x | is small, and the issue is clearly

to show that |f (x)|
|x | remains bounded.
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Differentiation Chain Rule

But,
|f (x)|

|x |
≤

|L(x)|

|x |
+

|f (x) − L(x)|

|x |
,

and the first term on the right is bounded by |L| while the second term
goes to → 0 as |x | → 0.

It follows that |f (x)|
|x | remains bounded as |x | → 0, and this completes the

proof of the chain rule.�
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Differentiation Partial Derivatives

Partial Derivatives

Suppose f : R
m → R

n. Then we can write

f (x) = (f1(x1, x2, ..., xm), f2(x1, x2, ..., xm), ..., fn(x1, x2, ..., xm)),

and consider the usual partial derivatives ∂fi
∂xj

.

If f is differentiable at x0 , then all of the partial derivatives ∂fi
∂xj

exist at x0

, and the derivative f ′(x0) is the linear map corresponding to the n × m
matrix of partial derivatives.

The converse is false, that is, the existence of partial derivatives at a point
does not imply that the function is differentiable there.
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Differentiation Partial Derivatives

Definition

Let L(Rm, Rn) denote the set of all linear maps of R
m into R

n. This set is
a vector space of dimension mn whose elements can be represented by
n × m matrices.

Definition

Let U be an open set in R
m and f : U → R

n a differentiable map. Since
the derivative f ′(x) at each point x of U is a linear map of R

m → R
n, we

can think of f ′ as a map f ′ : U → L(Rm, Rn). We call f ′ the derivative of
f .

Definition

Let U be an open subset of R
m. If f : U → R

n is differentiable and
f ′ : U → L(Rm, Rn) is continuous, then we say that f is continuously
differentiable, and write f ǫC 1.
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Differentiation Partial Derivatives

Theorem

Let U be an open set in R
m and let f : U → R

n. Then f is continuously
differentiable if and only if all of the partial derivatives ∂fi

∂xj
exist and are

continuous on U.
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Differentiation Partial Derivatives

Simple Fact:Let f be a differentiable real-valued function defined on an
open set U in R

m. Suppose that f has a local maximum or local minimum
at a point x0 in U. Then f ′(x0) = 0.

Simple Fact: Let U be a connected open set in R
m and f : U → R

n a
differentiable map such that f ′(x) = 0 for every xǫU. Then f is constant
on U.
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Differentiation Partial Derivatives

Theorem

Let U be an open set in R
m and let f : U → R be a function such that all

partial derivatives of orders one and two exist and are continuous on U.
Then

∂2f

∂xi∂xj

=
∂2f

∂xj∂xi

for all 1 ≤ i , j ≤ m. In other words, the order of differentiation in mixed
partials is irrelevant.
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Differentiation Partial Derivatives

Remark

If all partial derivatives of orders ≤ n are continuous, then the order of
differentiation in them is irrelevant.
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Differentiation Partial Derivatives

Functions with Preassigned Partial Derivatives

Let U be an open set in R
m and f : U → R a function of class C 2

(remember this means that all partial derivatives of orders one and two
exist and are continuous). We know that

∂2f

∂xi∂xj

=
∂2f

∂xj∂xi

for all 1 ≤ i , j ≤ m.

Now we run this story in reverse, and imagine that we are seeking a
function f : U → R of class C 2, where U is, for simplicity, an open set in
the plane R

2.
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Differentiation Partial Derivatives

We are given two functions r and s : U → R of class C 1 such that

∂f

∂x
= r and

∂f

∂y
= s.

If f exists, then
∂2f

∂y∂x
=

∂

∂y

∂f

∂x
=

∂r

∂y

and
∂2f

∂x∂y
=

∂

∂x

∂f

∂y
=

∂s

∂x

hence by equality of mixed partials, we’ll have

∂r

∂y
=

∂s

∂x
.

So if we want to find f , we’d better make sure that

∂r

∂y
=

∂s

∂x
.

.
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Differentiation Partial Derivatives

But is this enough to guarantee that f exists?

Surprisingly, the answer is,

“Sometimes yes and sometimes no.”

We will see that it depends on the topology of the domain U on which
these functions are defined.

This influence of the topology of a domain on the behavior of functions
defined there is a theme that will be repeated throughout the course.
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Differentiation Partial Derivatives

Theorem

Let r and s : R
2 → R be C 1 functions such that ∂r

∂y
= ∂s

∂x
. Then there

exists a C 2 function f : R
2 → R such that ∂f

∂x
= r and ∂f

∂y
= s.

Remark

If two such functions f1 and f2 exist, then their difference f1 − f2 is a
constant, as an immediate consequence of the mean value theorem.

Example

Let U = R
2 − (0, 0). Let r(x , y) = −y

x2+y2 and s(x , y) = x
x2+y2 .Then

∂r
∂y

= ∂s
∂x

, yet there is no function f : U → R such that ∂f
∂x

= r and ∂f
∂y

= s.
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Differentiation Partial Derivatives

Differentiating under the integral sign

The following lemma will be used in proving the theorem.

Lemma

Suppose f (x , t) is C 1 for xǫR1 and tǫ[0, 1]. Define F (x) =
∫ 1
t=0 f (x , t)dt.

Then F is of class C 1 and F ′(x) =
∫ 1
t=0

∂f (x ,t)
∂x

dt.

The proof is an application of the mean value theorem.
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Differentiation Partial Derivatives

There are various generalizations of this lemma, all proven similarly. For
example, we can replace xǫR1 by (x , y)ǫR2, define F (x , y) = f (x , y , t)dt
and conclude that

∂F (x , y)

∂x
=

∫ 1

t=0

∂f (x , y , t)

∂x
dt.

We are ready to prove our theorem, and restate it for convenience.

Theorem

Let r , s : R
2 → R be C 1 functions such that ∂r

∂y
= ∂s

∂x
. Then there exists a

C 2 function f : R
2 → R such that ∂f

∂x
= r and ∂f

∂y
= s.
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Differentiation Partial Derivatives

Proof:First suppose we are given f (x , y) with f (0, 0) = 0. Define
g(t) = f (tx , ty), and note that, by the chain rule,

g ′(t) =
∂f

∂x
(tx , ty)x +

∂f

∂y
(tx , ty)y .

Then

f (x , y) = g(1) =

∫ 1

t=0
g ′(t)dt

=

∫ 1

t=0

∂f

∂x
(tx , ty)x +

∂f

∂y
(tx , ty)ydt.

Therefore, to find a function f (x , y) such that ∂f
∂x

= r and ∂f
∂y

= s, we
should define f by

f (x , y) =

∫ 1

t=0
r(tx , ty)x + s(tx , ty)ydt,

and aim to show that ∂f
∂x

= r and ∂f
∂y

= s.
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Differentiation Partial Derivatives

Given

f (x , y) =

∫ 1

t=0
r(tx , ty)x + s(tx , ty)ydt,

we differentiate under the integral sign, using our lemma:

∂f (x , y)

∂x
=

∫ 1

t=0
r(tx , ty) +

∂r

∂x
(tx , ty)tx +

∂s

∂x
(tx , ty)tydt,

∂f (x , y)

∂x
=

∫ 1

t=0
r(tx , ty) +

∂r

∂x
(tx , ty)tx +

∂r

∂y
(tx , ty)tydt.

Now define h(t) = r(tx , ty) and note that

h′(t) =
∂r

∂x
(tx , ty)x +

∂r

∂y
(tx , ty)y .
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Differentiation Partial Derivatives

Thus,
∂f (x , y)

∂x
=

∫ 1

t=0
h(t) + th′(t)dt

=

∫ 1

t=0
(th(t))′dt

h(1) = r(x , y).

Likewise, ∂f (x ,y)
∂y

= s(x , y), and our theorem is proved.�
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Differentiation Critical Points

Critical points

Let U be an open set in the plane R
2, and let f : U → R be a real valued

function on U, all of whose first and second partial derivatives exist and
are continuous on U. In such a case, we say that f is of class C 2 on U.

We know that if f has a local maximum or minimum at a point (x0, y0) of
U, then the first partials ∂f

∂x
and ∂f

∂y
are both zero at (x0, y0).

Searching for such points, we call (x0, y0) a critical point of f if ∂f
∂x

and ∂f
∂y

are both zero at (x0, y0), and want to learn whether (x0, y0) is a local
maximum or minimum point, a saddle point, or perhaps something more
exotic.
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Differentiation Critical Points

Models:

f (x , y) = −x2 − y2 has a local maximum at (0, 0)

f (x , y) = x2 + y2 has a local minimum at (0, 0)

f (x , y) = x2 − y2 has a saddle point at (0, 0).

The issue hinges upon consideration of the Hessian matrix of second
partial derivatives at the point (x0, y0):

(

∂2f
∂x2

∂2f
∂x∂y

∂2f
∂y∂x

∂2f
∂y2

)

We know from equality of mixed partials that this matrix is symmetric.
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Differentiation Critical Points

Theorem

Suppose that (x0, y0) is a critical point of f , and let H denote the Hessian
of f at (x0, y0).

1 If det(H) > 0 and both diagonal terms are > 0, then f has a local
minimum at (x0, y0).

2 If det(H) > 0 and both diagonal terms are < 0, then f has a local
maximum at (x0, y0).

3 If det(H) < 0, then (x0, y0) is a saddle point of f .

4 If det(H) = 0, the test is inconclusive.

5 If f has a local minimum or local maximum at f , then det(H) ≤ 0.

Ryan Blair (U Penn) Math 600 Day 1: Review of advanced CalculusThursday September 8, 2010 27 / 46



Differentiation Critical Points

Definition

Let U be an open set in /R2 and f : U → R a real valued function on U
of class C 2. Let (x0, y0) be a critical point of f , and let H be the Hessian
matrix of second partials of f , evaluated at (x0, y0). Then (x0, y0) is called
a nondegenerate critical point if det(H) 6= 0, and a degenerate critical
point if det(H) = 0.
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Differentiation Inverse Function Theorem

Inverse Function Theorem

Theorem

(Inverse Function Theorem) Let f : R
n → R

n be continuously
differentiable on an open set containing a, with nonsingular derivative dfa.

Then there exists an open set V containing a and an open set W
containing f (a), such that f : V → W is one-one and onto, and its inverse
f −1 : W → V is also differentiable.

Furthermore, d(f −1)f (a) = (dfa)
−1.

Example

The mapping f : R
2 → R

2 given by f (x , y) = (excos(y), ex sin(y)) shows
that in R

2, unlike R
1, the derivative of f can be nonsingular at each point

without f being a diffeomorphism on all of R
2.
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Differentiation Inverse Function Theorem

Proof of the Inverse Function Theorem.

Following the map f : R
n → R

n by the linear transformation (dfa)
−1 makes

the derivative at a the identity, so we assume this from the start:dfa = I .

Since

limh→0
|f (a + h) − f (a) − dfa(h)|

|h|
= 0,

with dfa(h) = h, we can not have f (a + h) = f (a) for nonzero h arbitrarily
close to 0.

Hence, there is a closed rectangle U centered at a with
(1) f (x) 6= f (a) if xǫU and x 6= a.
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Differentiation Inverse Function Theorem

Since f is C 1 on an open set containing a, we can assume

(2) dfx is nonsingular for xǫU,

(3) | ∂fi
∂xj

(x) − ∂fi
∂xj

(a)| < 1
2n2 for all xǫU and all i , j .

Condition (3) will force f to be one-to-one on U. To that end, we first
state and prove

Lemma

Let A be a rectangle in R
n, and g : A → R

n of class C 1. Suppose that
|∂gi

∂xj
| ≤ M at all points of A. Then |g(x) − g(u)| ≤ n2M|x − u| for all

x , uǫA.
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Differentiation Inverse Function Theorem

Proof of Lemma.

Going from u to x by changing one coordinate at a time, and applying the
MVT at each step, we get

|gi (x) − gi (u)| ≤ Σn
j=1|xj − uj |M ≤ nM|x − u|.

Hence,
|g(x) − g(u)| ≤ Σn

i=1|gi (x) − gi (u)| ≤ n2M|x − u|,

as claimed.
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Differentiation Inverse Function Theorem

Now apply this lemma to the function g(x) = f (x) − x , and use

(3) | ∂fi
∂xj

(x) − ∂fi
∂xj

(a)| < 1
2n2 for all xǫU and all i , j ,

which implies that |∂gi

∂xj
(x) − ∂gi

∂xj
(a)| < 1

2n2 .

Now ∂gi

∂xj
(a) = 0, and hence by the Lemma we get

|g(x) − g(u)| ≤ n2(
1

2n2
|x − u| =

1

2
|x − u|.

Thus, |(f (x) − x) − (f (u) − u)| ≤ 1
2 |x − u|.
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Differentiation Inverse Function Theorem

Hence, using the triangle inequality, we get

|x − u| − |f (x) − f (u)| ≤ |(f (x) − x) − (f (u) − u)| ≤
1

2
|x − u|.

So,

(4) |f (x) − f (u)| ≥ 1
2 |x − u|,

for all x , uǫU, implying that f is one-to-one on U, as claimed earlier.
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Differentiation Inverse Function Theorem

Now f (∂U) is a compact set which does not contain f (a), since f is
one-to-one on U.

Let d = distance from f (a) to f (∂U).

Let W = {y : |y − f (a)| < d
2} = open neighborhood of f (a).

Thus, if yǫW and xǫ∂U, we have

(5) |y − f (a)| < |y − f (x)|.
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Differentiation Inverse Function Theorem

CLAIM. For any yǫW , there is a unique xǫU with f (x) = y .

Proof. Fix yǫW and consider the real-valued function g : U → R defined
by

g(x) = |y − f (x)|2 = Σn
i=1(yi − f (xi ))

2.

Since g is continuous, it has a minimum value on U.

By (5) above, this min can not occur on ∂U. Say it occurs at xǫint(U).
Then ∂g

∂xj
(x) = 0for all j . That is,

Σn
i=12(yi − fi(x))(

∂fi
∂xj

(x)) = 0

for all j .

But the matrix ( ∂fi
∂xj

(x)) is invertible. Hence yi − fi(x) = 0 for all i , that is,

y = f (x). This x is unique, since f is one-to-one on U.

Ryan Blair (U Penn) Math 600 Day 1: Review of advanced CalculusThursday September 8, 2010 36 / 46



Differentiation Inverse Function Theorem

Now let V = int(U) ∩ f −1(W ).

By the previous claim, f : V → W is one-to-one and onto.

Let f −1 : W → V be its inverse. Then we rewrite (4) as

(6) |f −1(y) − f −1(y ′)| ≤ 2|y − y ′|,

showing that f −1 is continuous. It remains to show that f −1 is
differentiable.
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Differentiation Inverse Function Theorem

Proof that f
−1 : W → V is differentiable.

Let xǫV , and let y = f (x).
Let L = dfx , which we already know is nonsingular.

We will show f −1 is differentiable at y with d(f −1)y = L−1.

Write f (x ′) = f (x) + L(x ′ − x) + φ(x ′ − x), with Limx ′→x
|φ(x ′−x)|
|x ′−x | = 0.

Then L−1(f (x ′) − f (x)) = (x ′ − x) + L−1φ(x ′ − x), which we rewrite as
L−1(y ′ − y) = f −1(y ′) − f −1(y) + L−1φ(f −1(y ′) − f −1(y)), or
f −1(y ′) = f −1(y) + L−1(y ′ − y) − L−1φ(f −1(y ′) − f −1(y)).
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Differentiation Inverse Function Theorem

To show that f −1 is differentiable at y with d(f −1)y = L−1, we must show
that

Limy ′→y

|L−1φ(f −1(y ′) − f −1(y))|

|y ′ − y |
= 0.

Since L−1 is linear, it is sufficient to show that

Limy ′→y

|φ(f −1(y ′) − f −1(y))|

|y ′ − y |
= 0.

Now write the fraction |φ(f −1(y ′)−f −1(y))|
|y ′−y | as the product of the two

fractions |φ(f −1(y ′)−f −1(y))|
|(f −1(y ′)−f −1(y))|

and |(f −1(y ′)−f −1(y))|
|y ′−y | .
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Differentiation Inverse Function Theorem

We must show that the product of these two fractions goes to zero as
y ′ → y .

Since f −1 is continuous, y ′ → y implies x ′ = f −1(y ′) → x = f −1(y). The

first fraction |φ(f −1(y ′)−f −1(y))|
|(f −1(y ′)−f −1(y))|

can be rewritten as |φ(x ′−x)|
|x ′−x | , and this → 0

as x ′ → x since f is differentiable at x .

By (6), the second fraction |(f −1(y ′)−f −1(y))|
|y ′−y | ≤ 2. Hence the product of the

two fractions → 0 as y ′ → y , completing the proof that f −1 is
differentiable at y with derivative d(f −1)y = L−1 = (dfx)

−1, and with it
the proof of the Inverse Function Theorem.
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Differentiation The Implicit Function Theorem

The Implicit Function Theorem

In calculus, we learn that the equation f (x , y) = x2 + y2 = 1 can be
regarded as implicitly defining y as a function of x ,

y =
√

1 − x2 or y = −
√

1 − x2

. We also learn that we can compute the derivative dy
dx

without actually
solving for y . Just regard y as a function of x , write y = y(x), and then
the equation

f (x , y(x)) = 1

can be differentiated with respect to x by the chain rule.

Ryan Blair (U Penn) Math 600 Day 1: Review of advanced CalculusThursday September 8, 2010 41 / 46



Differentiation The Implicit Function Theorem

Doing this, we get
∂f

∂x
+ (

∂f

∂y
)(

dy

dx
) = 0,

and hence
dy

dx
=

∂f
∂x
∂f
∂y

= −
2x

2y
.

There are some subtleties: we can not solve for y as a function of x near
the points (l , 0) and (−1, 0). The implicit function theorem handles these
subtleties, and we begin with the simplest case.
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Differentiation The Implicit Function Theorem

Theorem

(Implicit function theorem) Let f : R
2 → R be a C 1 function defined on a

neighborhood of (a, b), with f (a, b) = c. Suppose that ∂f
∂y

(a, b) 6= 0. Then

there is a C 1 function g : R → R defined on a neighborhood of a such
that g(a) = b and such that f (x , g(x)) = c for all x in that neighborhood.

Proof. Define a C 1 function F : R
2 → R

2 on the given neighborhood of
(a, b) by F (x , y) = (x , f (x , y)). The derivative F ′(a, b) is nonsingular
because it is represented by a 2 × 2 matrix with determinant ∂f

∂y
(a, b).

Hence, by the Inverse Function Theorem, F is a C 1 function with C 1

inverse from a neighborhood U of (a, b) to a neighborhood V of
F (a, b) = (a, c).
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Differentiation The Implicit Function Theorem

Let H : V → U be the inverse C 1 map. Since F (x , y) = (x , f (x , y)), we
have H(x , z) = (x , h(x , z)). If we define g(x) = h(x , c) on a neighborhod
of x , then

F (x , g(x)) = F (x , h(x , c)) = FH(x , c) = (x , c)

, so
f (x , g(x)) = c ,

as desired.�
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Differentiation The Implicit Function Theorem

The general case is no more difficult to prove, and we style the notation so
that its statement looks almost the same as the statement of its prototype
above:

x = (x1, x2, ..., xm)ǫRm

y = (y1, y2, ..., yn)ǫRn

z = (z1, z2, ..., zn)ǫR
n,

and the (i , j) entry of the n × n matrix ∂f
∂y

(a, b) is the partial derivative
∂fi
∂yj

(a, b).
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Differentiation The Implicit Function Theorem

Theorem (Implicit function theorem (general case))

Let f : R
m × R

n → R
n be a C 1 function defined on a neighborhood of

(a, b), with f (a, b) = c. Suppose that the n × n matrix ∂f
∂y

(a, b) is

nonsingular. Then there is a C 1 function g : R
m → R

n defined on a
neighborhood of a such that g(a) = b and such that f (x , g(x)) = c for all
x in that neighborhood.
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