I have posted formulae for the exponential of (2x2) and (3x3)-matrices with real eigenvalues. Last time we discussed the case where A is a (3x3)-matrix with two eigenvalues λ_1 and λ_2 where λ_2 is a double root. (i.e. $p(\lambda) = -(\lambda - \lambda_2)(\lambda - \lambda_2)^2$.

If A is a real (3 \times 3)-matrix with one real eigenvalue (λ,λ,λ) so λ is a triple root of the characteristic equation

$$p(\lambda) = det(A - \lambda I) = 0$$

then the exponential of A is given by

$$e^{tA} = e^{\lambda t} (I + t(A-\lambda I) + \frac{\lambda}{2} t^2 (A-\lambda I)^2).$$

#8 Spring 15

$$B = \begin{bmatrix} -1 & 2 & -1 \\ 0 & -1 & 2 \\ 0 & 0 & -1 \end{bmatrix} \qquad \frac{d\overline{X}}{d\overline{t}}(t) = B \overline{X}(t)$$

Find the general solution.

$$e^{tB} = ?$$
 $det(B - \lambda I) = (-1-\lambda)^3$
 $\lambda = -1$ triple root.

$$e^{tB} = e^{-t}(I + t (B+I) + \frac{1}{2}t^{2}(B+I)^{2})$$

$$B+I = \begin{bmatrix} 0 & 2 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2 & -1 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} (B+I)^2 = \begin{bmatrix} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$e^{tB} = e^{-t} \begin{bmatrix} 1 & 2t & 2t^2 - t \\ 0 & 1 & 2t \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = e^{-t} \begin{bmatrix} a + (2b-c)t + 2ct^2 \\ b + 2ct \\ c \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 2 & -1 \\ -1 & 3 & -1 \\ -1 & 2 & 0 \end{bmatrix}$$

Find A^{11}

$$det(A-\lambda I)) = (1-\lambda)^{3}$$

$$A = I + N \qquad SO \qquad N = \begin{bmatrix} -1 & 2 & -1 \\ -1 & 2 & -1 \\ -1 & 2 & -1 \end{bmatrix}$$

$$N^2 = 0$$

$$A^{11} = (I+N)^{11} = I + 11N = \begin{bmatrix} -10 & 22 & -11 \\ -11 & 23 & -11 \\ -11 & 22 & -10 \end{bmatrix}$$

Today we start differential equation. Linear n-th order.

$$a_0(x)\frac{d^ny}{dx^n} + a_1(x)\frac{d^{n-1}y}{dx^{n-1}} + \cdots + a_{n-1}(x)\frac{dy}{dx} + a_n(x)y = F(x)$$

 $a_k(x)$ are continuous functions of x $a_0(x) \neq 0$

> consider the equation xy' + y = 0solution is y = k/xyou can not specify y(0)

$$xy' - y = 0$$

solution is y = kx

again you can not require y(0) = 1.

If $a_0(x) = 0$ complicated things happen which we will not discuss at this time.

usually we divide by $a_0(x)$ so $a_0(x) = 1$

If F(x) = 0 we call this the equation homogeneous y = 0 is a solution.

General theory. At a point x_0 you can freely specify $y(x_0)$, $y'(x_0)$, ..., $y^{(n-1)}(x_0)$ and then the solution is uniquely determined.

Every n-th order differential equation is first order matrix equation. we assume $a_0(x) = 1$

let
$$\overrightarrow{y}$$
 = $(y(x), y'(x), \dots, y^{(n-1)}(x))$

$$\frac{d\overline{y}}{dx} = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 & 1 \\ -a_{n} - a_{n-1} - a_{n-1} - a_{n-3} - a_{n-3} - a_{1} \end{bmatrix} \begin{bmatrix} y \\ y' \\ y'' \\ -a_{1} \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ F \end{bmatrix}$$

Importance you can prove there is a solution

$$\overrightarrow{y}(x) = \overrightarrow{y}(x_0) + \int_{x_0}^{x} A(t)\overrightarrow{y}(t) + \overrightarrow{c}(t) dt$$

Iterate

n-order linear differential equation with constant coefficients.

$$y^{(n)} + a_1 y^{(n-1)} + \cdots + a_{n-1} y' + a_n y = F$$

Homogeneous equation set F = 0

D = differential operator
$$\frac{d}{dx}$$

$$(D^{n} + a_{1}D^{n-1} + \cdots + a_{n-1}D + a_{n}) = 0$$

$$(D-\lambda_1)^{k_1}(D-\lambda_2)^{k_2}\cdots(D-\lambda_m)^{\lambda_m}y = 0$$

Single real root
$$y = Ce^{\lambda_i X}$$

Double real root
$$y = C_1 e^{\lambda_i X} + C_2 x e^{\lambda_i X}$$

Triple real root
$$y = c_1^2 e^{\lambda_i X} + c_2^2 x e^{\lambda_i X} + c_3^2 x^2 e^{\lambda_i X}$$

etc

Complex roots occur in pairs

$$a \pm ib$$
 $C_1 e^{aX} cos(bx) + C_2 e^{aX} sin(bx)$